Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Biology
Article . 2010 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2010
Data sources: ZENODO
ZENODO
Article . 2010
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physiological climatic limits inDrosophila: patterns and implications

Authors: Hoffmann, A.A.;

Physiological climatic limits inDrosophila: patterns and implications

Abstract

SUMMARYPhysiological limits determine susceptibility to environmental changes, and can be assessed at the individual, population or species/lineage levels. Here I discuss these levels in Drosophila, and consider implications for determining species susceptibility to climate change. Limits at the individual level in Drosophila depend on experimental technique and on the context in which traits are evaluated. At the population level, evidence from selection experiments particularly involving Drosophila melanogaster indicate high levels of heritable variation and evolvability for coping with thermal stresses and aridity. An exception is resistance to high temperatures, which reaches a plateau in selection experiments and has a low heritability/evolvability when temperatures are ramped up to a stressful level. In tropical Drosophila species, populations are limited in their ability to evolve increased desiccation and cold resistance. Population limits can arise from trait and gene interactions but results from different laboratory studies are inconsistent and likely to underestimate the strength of interactions under field conditions. Species and lineage comparisons suggest phylogenetic conservatism for resistance to thermal extremes and other stresses. Plastic responses set individual limits but appear to evolve slowly in Drosophila. There is more species-level variation in lower thermal limits and desiccation resistance compared with upper limits, which might reflect different selection pressures and/or low evolvability. When extremes are considered, tropical Drosophila species do not appear more threatened than temperate species by higher temperatures associated with global warming, contrary to recent conjectures. However, species from the humid tropics may be threatened if they cannot adapt genetically to drier conditions.

Related Organizations
Keywords

Insecta, Arthropoda, Diptera, Climate, Climate Change, Population Dynamics, Temperature, Genetic Variation, Biodiversity, Environment, Adaptation, Physiological, Biological Evolution, Drosophila melanogaster, fruit flies, flies, Animalia, Animals, Taxonomy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    310
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
310
Top 1%
Top 1%
Top 1%
bronze