- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, GermanyPublisher:Wiley Alessio Dessì; Matteo Monai; Matteo Bessi; Tiziano Montini; Massimo Calamante; Alessandro Mordini; Gianna Reginato; Cosimo Trono; Paolo Fornasiero; Lorenzo Zani;pmid: 29227040
handle: 11368/2917726 , 20.500.14243/329245 , 11365/1061508
AbstractDonor–acceptor dyes are a well‐established class of photosensitizers, used to enhance visible‐light harvesting in solar cells and in direct photocatalytic reactions, such as H2 production by photoreforming of sacrificial electron donors (SEDs). Amines—typically triethanolamine (TEOA)—are commonly employed as SEDs in such reactions. Dye‐sensitized photoreforming of more sustainable, biomass‐derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor. In this work, several rationally designed donor–acceptor dyes were used as sensitizers in H2 photocatalytic production, comparing the efficiency of TEOA and EtOH as SEDs. In particular, the effect of hydrophobic chains in the spacer and/or the donor unit of the dyes was systematically studied. The H2 production rates were higher when TEOA was used as SED, whereas the activity trends depended on the SED used. The best performance was obtained with TEOA by using a sensitizer with just one bulky hydrophobic moiety, propylenedioxythiophene, placed on the spacer unit. In the case of EtOH, the best‐performing sensitizers were the ones featuring a thiazolo[5,4‐d]thiazole internal unit, needed for enhancing light harvesting, and carrying alkyl chains on both the donor part and the spacer unit. The results are discussed in terms of reaction mechanism, interaction with the SED, and structural/electrochemical properties of the sensitizers.
Usiena air - Univers... arrow_drop_down ChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Usiena air - Univers... arrow_drop_down ChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 ItalyPublisher:Royal Society of Chemistry (RSC) Authors: DE ROGATIS L; MONTINI, TIZIANO; LORENZUT B; FORNASIERO, Paolo;doi: 10.1039/b805426f
handle: 11368/1850805
Ni(x wt.%) Cu(y wt.%)/Al2O3 samples were investigated as active and thermally stable catalysts for methanol and ethanol steam reforming. XRD data clearly evidenced the formation of a NiCu alloy under the adopted preparation procedure. The bimetallic systems exhibited improved activity in the methanol steam reforming with respect to the monometallic ones. The introduction of copper in the catalyst formulation showed a positive effect inhibiting the formation of methane, an undesirable by-product. On the other hand, in the ethanol steam reforming, the catalytic performance was less promising. Furthermore, the Ni : Cu ratio did not seem to affect the product distribution. However, enhanced stability was observed in the two subsequent run-up experiments, indicating the positive role played by the bimetallic systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b805426f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b805426f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors: BELTRAM, ALESSANDRO; ROMERO OCAÑA, ISMAEL; Josè Delgado Jaen, Juan; MONTINI, TIZIANO; +1 AuthorsBELTRAM, ALESSANDRO; ROMERO OCAÑA, ISMAEL; Josè Delgado Jaen, Juan; MONTINI, TIZIANO; FORNASIERO, Paolo;handle: 11368/2901758 , 20.500.14243/306857
Photocatalytic reforming of renewable raw materials in aqueous solutions represents a valid possibility for the valorization of wastes from agricultural and industrial processes. In this study, we prepared TiO2 materials with different phase compositions by changing the urea/Ti molar ratio employed during the hydrothermal preparation method. After deposition of Pt nanoparticles, the photocatalytic H2 production was investigated using ethanol and glycerol as sustainable sacrificial agent. While anatase/rutile nanocomposites showed poor catalytic activity, the anatase/brookite nanocomposites showed more promising performances. Specifically, the anatase-rich materials showed the best performances on mass bases. When normalized with respect to the surface area of the photocatalysts, the activity continuously increased with the brookite content, indicating that exposed facets of brookite possess an intrinsic higher activity than that of the other polymorphs.
Archivio istituziona... arrow_drop_down Applied Catalysis A GeneralArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2015.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Applied Catalysis A GeneralArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2015.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 ItalyPublisher:Wiley CARGNELLO, MATTEO; Gasparotto A.; GOMBAC, VALENTINA; MONTINI, TIZIANO; Barreca D.; FORNASIERO, Paolo;handle: 11368/2381194 , 20.500.14243/285749 , 11577/154245
AbstractReview: 125 refs.
IRIS Cnr arrow_drop_down ChemInformArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemische BerichteArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201148275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu137 citations 137 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down ChemInformArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemische BerichteArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201148275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 ItalyPublisher:Frontiers Media SA Alessandra Zanoletti; Ivano Vassura; Ivano Vassura; Elisa Venturini; Matteo Monai; Tiziano Montini; Stefania Federici; Annalisa Zacco; Laura Treccani; Elza Bontempi;In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge, this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.
Frontiers in Chemist... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2018.00060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Chemist... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2018.00060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:MIURMIURTiziano Montini; Valentina Gombac; Juan J. Delgado; Anna Maria Venezia; Gianpiero Adami; Paolo Fornasiero;handle: 11368/2999114 , 20.500.14243/422693
Among the 17 Sustainable Development Goals presented by the United Nations in 2015, great attention is devoted to the production of goods and chemicals by use of renewable raw materials, by recycling of products and by extensive use of renewable energy sources. In this context, photocatalysis attracted great attention for the possibility to exploit Solar light to promote the desired chemical reactions. Besides its use in degradation of pollutants and in the production of fuels, some efforts have been devoted in the development of photocatalytic processes for the synthesis of fine chemicals with high added-value. In this work, we investigated the sustainable photocatalytic synthesis of benzimidazole derivatives through a one-pot, tandem process starting from a nitro compound and ethanol. By a photocatalytic approach, ethanol is dehydrogenated producing the hydrogen required for reduction of nitro groups and the aldehyde required for cyclization and production of the benzimidazole unit. Co-doping of TiO2 with B and N is beneficial to increase the photocatalytic activity in H2 production from ethanol. The effect of various metal co-catalysts (Pt, Pd Ag, Cu) have been evaluated on H2 production rate and on selectivity in the synthesis of substituted benzimidazoles: Pt showed the highest selectivity in the desired products while Pd demonstrated a great activity for hydrodehalogenation, with potential interest for degradation of persistent pollutants.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ica.2021.120289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ica.2021.120289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:Elsevier BV BEVILACCQUA M; MONTINI, TIZIANO; TAVAGNACCO, CLAUDIO; VICARIO, GIANPAOLO; FORNASIERO, Paolo; GRAZIANI, MAURO;handle: 11368/1694273
Recently LaNi1−xFexO3 materials have been suggested as good candidates for cathodes for Intermediate Temperature Solid Oxide Fuel Cells. The electrical conductivity and the morphology of LaNi0.6Fe0.4O3 samples have been studied as a function of preparation route and calcination temperature. The conductivity, mainly electronic, strongly depends on the densification of the material, which is influenced by the preparation procedure. DFT calculations indicate that the conduction bands of LaNi0.6Fe0.4O3 are mainly made up of Fe and Ni 3d states and that there is a small bandwidth (2.3 eV) around the Fermi level. Moreover, a small polaron mechanism for the electronic conduction in this material is suggested by the simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ssi.2006.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ssi.2006.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Royal Society of Chemistry (RSC) Gallo A.; Marelli M.; Psaro R.; GOMBAC, VALENTINA; MONTINI, TIZIANO; FORNASIERO, Paolo; Pievo R.; Dal Santo V.;doi: 10.1039/c2gc16112e
handle: 11368/2467131
A new class of bimetallic Au–Pt/TiO2 photocatalysts were developed and employed in H2 photoassisted production using ethanol as a sacrificial reagent both under UV-A and simulated sunlight irradiation. Remarkably, preliminary experiments show promising hydrogen evolution under visible light using Au0.5–Pt0.5/TiO2 with methanol. The presence of bimetallic Au–Pt nanoparticles and the TiO2 visible light absorption, induced by the presence of oxygen vacancies and/or Ti3+, are the two parameters accounting for the difference in activity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2gc16112e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2gc16112e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, ItalyPublisher:American Chemical Society (ACS) Funded by:MIURMIURMatteo Bartolini; Valentina Gombac; Adalgisa Sinicropi; Gianna Reginato; Alessio Dessi'; Alessandro Mordini; Jonathan Filippi; Tiziano Montini; Massimo Calamante; Paolo Fornasiero; Lorenzo Zani;handle: 11368/2974186 , 20.500.14243/407007 , 11365/1120892
Photocatalytic hydrogen production has recently emerged as a promising process for the long-term storage of solar energy. In this work, we studied the application to H2 generation of a series of heterogeneous photocatalysts obtained by sensitizing Pt/TiO2 nanoparticles with ten different D-pi-A organic dyes containing the benzo[c][1,2,5]thiadiazole (BTD) heterocyclic moiety. Starting from the known DSSC sensitizer RK-1, our approach involved the systematic and simultaneous alteration of several important structural features, such as steric bulk and hydrophobicity/hydrophilicity in different parts of the molecules, giving rise to a set of compounds with diverse physico-chemical properties. Visible light-driven H2 generation studies conducted with the dye-sensitized photocatalysts together with different sacrificial electron donors (SED) revealed that both their overall hydrogen production efficiency and their relative order of performances could be altered by the choice of SED and the corresponding reaction conditions. In particular, the best results were obtained with dyes having a strongly hydrophobic central core and a hydrophilic donor section in combination with ascorbic acid as the electron donor. In addition, the effect of changing the dye loading and extending the reaction time was examined, resulting in a stable three-component photocatalytic system displaying high activity up to 72 hours of experiment.
IRIS Cnr arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV MONTINI, TIZIANO; MONAI, MATTEO; BELTRAM, ALESSANDRO; ROMERO OCAÑA, ISMAEL; FORNASIERO, Paolo;handle: 11368/2872945 , 20.500.14243/306863
Clean and efficient hydrogen production is of great interest because hydrogen is envisioned as the fuel of the future. In particular, hydrogen production from biomass-derived alcohols has attracted great attention because of the potential application in fuel cells. In this short review, the major results obtained in the last years by the Material, Environment and Energy (MEE) research group at the University of Trieste (Italy) in the photocatalytic production of hydrogen are summarized. Our attention has been devoted to the use of biomass-derived oxygenated compounds (mainly ethanol and glycerol) as sacrificial agents to improve hydrogen production. Various synthetic techniques (sol-gel, hydrothermal synthesis etc.) have been adopted to prepare nanostructured TiO2-based photocatalysts with different phase composition and/or morphology in the form of powders. Different strategies have been adopted to improve the performances of TiO2-based materials, especially favoring the photocatalytic activity under simulated sunlight. Metal nanoparticles (Cu, Pt, Au, Pd), self-doping of TiO2 and hierarchically organized nanocomposite with carbon nanotubes strongly improve the hydrogen production. The results will highlight the role of different parameters (phase composition, morphology, doping and nanocomposite formulation) in the improvement of photocatalytic hydrogen production.
Archivio istituziona... arrow_drop_down Materials Science in Semiconductor ProcessingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mssp.2015.06.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Materials Science in Semiconductor ProcessingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mssp.2015.06.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, GermanyPublisher:Wiley Alessio Dessì; Matteo Monai; Matteo Bessi; Tiziano Montini; Massimo Calamante; Alessandro Mordini; Gianna Reginato; Cosimo Trono; Paolo Fornasiero; Lorenzo Zani;pmid: 29227040
handle: 11368/2917726 , 20.500.14243/329245 , 11365/1061508
AbstractDonor–acceptor dyes are a well‐established class of photosensitizers, used to enhance visible‐light harvesting in solar cells and in direct photocatalytic reactions, such as H2 production by photoreforming of sacrificial electron donors (SEDs). Amines—typically triethanolamine (TEOA)—are commonly employed as SEDs in such reactions. Dye‐sensitized photoreforming of more sustainable, biomass‐derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor. In this work, several rationally designed donor–acceptor dyes were used as sensitizers in H2 photocatalytic production, comparing the efficiency of TEOA and EtOH as SEDs. In particular, the effect of hydrophobic chains in the spacer and/or the donor unit of the dyes was systematically studied. The H2 production rates were higher when TEOA was used as SED, whereas the activity trends depended on the SED used. The best performance was obtained with TEOA by using a sensitizer with just one bulky hydrophobic moiety, propylenedioxythiophene, placed on the spacer unit. In the case of EtOH, the best‐performing sensitizers were the ones featuring a thiazolo[5,4‐d]thiazole internal unit, needed for enhancing light harvesting, and carrying alkyl chains on both the donor part and the spacer unit. The results are discussed in terms of reaction mechanism, interaction with the SED, and structural/electrochemical properties of the sensitizers.
Usiena air - Univers... arrow_drop_down ChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Usiena air - Univers... arrow_drop_down ChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 ItalyPublisher:Royal Society of Chemistry (RSC) Authors: DE ROGATIS L; MONTINI, TIZIANO; LORENZUT B; FORNASIERO, Paolo;doi: 10.1039/b805426f
handle: 11368/1850805
Ni(x wt.%) Cu(y wt.%)/Al2O3 samples were investigated as active and thermally stable catalysts for methanol and ethanol steam reforming. XRD data clearly evidenced the formation of a NiCu alloy under the adopted preparation procedure. The bimetallic systems exhibited improved activity in the methanol steam reforming with respect to the monometallic ones. The introduction of copper in the catalyst formulation showed a positive effect inhibiting the formation of methane, an undesirable by-product. On the other hand, in the ethanol steam reforming, the catalytic performance was less promising. Furthermore, the Ni : Cu ratio did not seem to affect the product distribution. However, enhanced stability was observed in the two subsequent run-up experiments, indicating the positive role played by the bimetallic systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b805426f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b805426f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors: BELTRAM, ALESSANDRO; ROMERO OCAÑA, ISMAEL; Josè Delgado Jaen, Juan; MONTINI, TIZIANO; +1 AuthorsBELTRAM, ALESSANDRO; ROMERO OCAÑA, ISMAEL; Josè Delgado Jaen, Juan; MONTINI, TIZIANO; FORNASIERO, Paolo;handle: 11368/2901758 , 20.500.14243/306857
Photocatalytic reforming of renewable raw materials in aqueous solutions represents a valid possibility for the valorization of wastes from agricultural and industrial processes. In this study, we prepared TiO2 materials with different phase compositions by changing the urea/Ti molar ratio employed during the hydrothermal preparation method. After deposition of Pt nanoparticles, the photocatalytic H2 production was investigated using ethanol and glycerol as sustainable sacrificial agent. While anatase/rutile nanocomposites showed poor catalytic activity, the anatase/brookite nanocomposites showed more promising performances. Specifically, the anatase-rich materials showed the best performances on mass bases. When normalized with respect to the surface area of the photocatalysts, the activity continuously increased with the brookite content, indicating that exposed facets of brookite possess an intrinsic higher activity than that of the other polymorphs.
Archivio istituziona... arrow_drop_down Applied Catalysis A GeneralArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2015.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Applied Catalysis A GeneralArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2015.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 ItalyPublisher:Wiley CARGNELLO, MATTEO; Gasparotto A.; GOMBAC, VALENTINA; MONTINI, TIZIANO; Barreca D.; FORNASIERO, Paolo;handle: 11368/2381194 , 20.500.14243/285749 , 11577/154245
AbstractReview: 125 refs.
IRIS Cnr arrow_drop_down ChemInformArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemische BerichteArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201148275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu137 citations 137 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down ChemInformArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemische BerichteArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201148275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 ItalyPublisher:Frontiers Media SA Alessandra Zanoletti; Ivano Vassura; Ivano Vassura; Elisa Venturini; Matteo Monai; Tiziano Montini; Stefania Federici; Annalisa Zacco; Laura Treccani; Elza Bontempi;In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge, this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.
Frontiers in Chemist... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2018.00060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Chemist... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2018.00060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:MIURMIURTiziano Montini; Valentina Gombac; Juan J. Delgado; Anna Maria Venezia; Gianpiero Adami; Paolo Fornasiero;handle: 11368/2999114 , 20.500.14243/422693
Among the 17 Sustainable Development Goals presented by the United Nations in 2015, great attention is devoted to the production of goods and chemicals by use of renewable raw materials, by recycling of products and by extensive use of renewable energy sources. In this context, photocatalysis attracted great attention for the possibility to exploit Solar light to promote the desired chemical reactions. Besides its use in degradation of pollutants and in the production of fuels, some efforts have been devoted in the development of photocatalytic processes for the synthesis of fine chemicals with high added-value. In this work, we investigated the sustainable photocatalytic synthesis of benzimidazole derivatives through a one-pot, tandem process starting from a nitro compound and ethanol. By a photocatalytic approach, ethanol is dehydrogenated producing the hydrogen required for reduction of nitro groups and the aldehyde required for cyclization and production of the benzimidazole unit. Co-doping of TiO2 with B and N is beneficial to increase the photocatalytic activity in H2 production from ethanol. The effect of various metal co-catalysts (Pt, Pd Ag, Cu) have been evaluated on H2 production rate and on selectivity in the synthesis of substituted benzimidazoles: Pt showed the highest selectivity in the desired products while Pd demonstrated a great activity for hydrodehalogenation, with potential interest for degradation of persistent pollutants.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ica.2021.120289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ica.2021.120289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:Elsevier BV BEVILACCQUA M; MONTINI, TIZIANO; TAVAGNACCO, CLAUDIO; VICARIO, GIANPAOLO; FORNASIERO, Paolo; GRAZIANI, MAURO;handle: 11368/1694273
Recently LaNi1−xFexO3 materials have been suggested as good candidates for cathodes for Intermediate Temperature Solid Oxide Fuel Cells. The electrical conductivity and the morphology of LaNi0.6Fe0.4O3 samples have been studied as a function of preparation route and calcination temperature. The conductivity, mainly electronic, strongly depends on the densification of the material, which is influenced by the preparation procedure. DFT calculations indicate that the conduction bands of LaNi0.6Fe0.4O3 are mainly made up of Fe and Ni 3d states and that there is a small bandwidth (2.3 eV) around the Fermi level. Moreover, a small polaron mechanism for the electronic conduction in this material is suggested by the simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ssi.2006.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ssi.2006.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Royal Society of Chemistry (RSC) Gallo A.; Marelli M.; Psaro R.; GOMBAC, VALENTINA; MONTINI, TIZIANO; FORNASIERO, Paolo; Pievo R.; Dal Santo V.;doi: 10.1039/c2gc16112e
handle: 11368/2467131
A new class of bimetallic Au–Pt/TiO2 photocatalysts were developed and employed in H2 photoassisted production using ethanol as a sacrificial reagent both under UV-A and simulated sunlight irradiation. Remarkably, preliminary experiments show promising hydrogen evolution under visible light using Au0.5–Pt0.5/TiO2 with methanol. The presence of bimetallic Au–Pt nanoparticles and the TiO2 visible light absorption, induced by the presence of oxygen vacancies and/or Ti3+, are the two parameters accounting for the difference in activity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2gc16112e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2gc16112e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, ItalyPublisher:American Chemical Society (ACS) Funded by:MIURMIURMatteo Bartolini; Valentina Gombac; Adalgisa Sinicropi; Gianna Reginato; Alessio Dessi'; Alessandro Mordini; Jonathan Filippi; Tiziano Montini; Massimo Calamante; Paolo Fornasiero; Lorenzo Zani;handle: 11368/2974186 , 20.500.14243/407007 , 11365/1120892
Photocatalytic hydrogen production has recently emerged as a promising process for the long-term storage of solar energy. In this work, we studied the application to H2 generation of a series of heterogeneous photocatalysts obtained by sensitizing Pt/TiO2 nanoparticles with ten different D-pi-A organic dyes containing the benzo[c][1,2,5]thiadiazole (BTD) heterocyclic moiety. Starting from the known DSSC sensitizer RK-1, our approach involved the systematic and simultaneous alteration of several important structural features, such as steric bulk and hydrophobicity/hydrophilicity in different parts of the molecules, giving rise to a set of compounds with diverse physico-chemical properties. Visible light-driven H2 generation studies conducted with the dye-sensitized photocatalysts together with different sacrificial electron donors (SED) revealed that both their overall hydrogen production efficiency and their relative order of performances could be altered by the choice of SED and the corresponding reaction conditions. In particular, the best results were obtained with dyes having a strongly hydrophobic central core and a hydrophilic donor section in combination with ascorbic acid as the electron donor. In addition, the effect of changing the dye loading and extending the reaction time was examined, resulting in a stable three-component photocatalytic system displaying high activity up to 72 hours of experiment.
IRIS Cnr arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV MONTINI, TIZIANO; MONAI, MATTEO; BELTRAM, ALESSANDRO; ROMERO OCAÑA, ISMAEL; FORNASIERO, Paolo;handle: 11368/2872945 , 20.500.14243/306863
Clean and efficient hydrogen production is of great interest because hydrogen is envisioned as the fuel of the future. In particular, hydrogen production from biomass-derived alcohols has attracted great attention because of the potential application in fuel cells. In this short review, the major results obtained in the last years by the Material, Environment and Energy (MEE) research group at the University of Trieste (Italy) in the photocatalytic production of hydrogen are summarized. Our attention has been devoted to the use of biomass-derived oxygenated compounds (mainly ethanol and glycerol) as sacrificial agents to improve hydrogen production. Various synthetic techniques (sol-gel, hydrothermal synthesis etc.) have been adopted to prepare nanostructured TiO2-based photocatalysts with different phase composition and/or morphology in the form of powders. Different strategies have been adopted to improve the performances of TiO2-based materials, especially favoring the photocatalytic activity under simulated sunlight. Metal nanoparticles (Cu, Pt, Au, Pd), self-doping of TiO2 and hierarchically organized nanocomposite with carbon nanotubes strongly improve the hydrogen production. The results will highlight the role of different parameters (phase composition, morphology, doping and nanocomposite formulation) in the improvement of photocatalytic hydrogen production.
Archivio istituziona... arrow_drop_down Materials Science in Semiconductor ProcessingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mssp.2015.06.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Materials Science in Semiconductor ProcessingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mssp.2015.06.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu