- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Asad Ullah; Hongxing Yao; Farid Ullah; Waris Khan; Humaira Gul; Fuad A. Awwad; Emad A. A. Ismail;Cette étude vise à étudier l'effet Joule, le rayonnement thermique et les effets de Coriolis dans l'écoulement micropolaire de magnétohydrodynamique instable (MHD) sur une feuille instable en 3D. Un champ magnétique est généralement appliqué à la surface ; en outre, on suppose que le fluide conduit l'électricité. D'autres micro-rotations sont également envisagées. Le problème physique est résolu à l'aide des équations fondamentales, et la complexité du problème est réduite à l'aide de variables de similarité. Dans la présente approche, la méthode d'analyse par homotopie (HAM) est utilisée. La chaleur, le facteur de frottement de la peau, la température, les micro-mouvements et la vitesse associés aux paramètres émergents et aux taux de transfert sont pris en compte. L'épaisseur de la couche limite augmente à mesure que le paramètre de vorticité augmente. Lorsque l'amplitude du champ magnétique augmente, le coefficient de frottement cutané diminue. Les variables d'état sont approximées jusqu'à six décimales numériquement. Les valeurs numériques de −f″(0) et −θ′(0) sont calculées avec des décimales plus élevées et comparées à la littérature disponible pour valider les résultats. Les résultats obtenus sont comparés à la littérature disponible ; les résultats sont ici corroborés, et la performance du JAMBON est démontrée. Este estudio tiene como objetivo investigar el efecto Joule, la radiación térmica y los efectos de Coriolis en el flujo micropolar de magnetohidrodinámica inestable (MHD) sobre una lámina inestable en 3-D. Normalmente se aplica un campo magnético a la superficie; además, se supone que el fluido está conduciendo electricidad. También se consideran otras microrrotaciones. El problema físico se resuelve con la ayuda de las ecuaciones fundamentales, y la complejidad del problema se reduce con el uso de variables de similitud. En el presente enfoque, se emplea el método de análisis de homotopía (HAM). Se considera el calor, el factor de fricción de la piel, la temperatura, los micro movimientos y la velocidad asociados con los parámetros emergentes y las tasas de transferencia. El espesor de la capa límite aumenta a medida que aumenta el parámetro de vorticidad. Cuando la magnitud del campo magnético aumenta, el coeficiente de fricción de la piel disminuye. Las variables de estado se aproximan hasta seis decimales numéricamente. Los valores numéricos de −f″(0) y −θ′(0) se calculan con decimales más altos y se comparan con la literatura disponible para validar los resultados. Los resultados obtenidos se comparan con la literatura disponible; los resultados aquí se corroboran y se demuestra el rendimiento del JAMÓN. This study aims to investigate the Joule effect, thermal radiation, and Coriolis effects in unsteady magnetohydrodynamics (MHD) micropolar flow over a 3-D unstable sheet. A magnetic field is typically applied to the surface; additionally, it is assumed that the fluid is conducting electricity. Other micro-rotations are also considered. The physical issue is resolved with the help of the fundamental equations, and the issue's complexity is reduced with the use of similarity variables. In the present approach, the homotopy analysis method (HAM) is employed. The heat, skin's friction factor, temperature, micro movements, and velocity associated with the emerging parameters and transfer rates are considered. The boundary layer thickness is increased as the parameter of vorticity increases. When the magnitude of the magnetic field increases, the skin friction coefficient decreases. The state variables are approximated up to six decimal places numerically. The numerical values of −f″(0) and −θ′(0) are computed to higher decimal places and compared with the available literature to validate the results. The outcomes obtained are compared with the available literature; the results here are corroborated, and the performance of the HAM is demonstrated. تهدف هذه الدراسة إلى التحقيق في تأثير الجول، والإشعاع الحراري، وآثار كوريوليس في تدفق هيدروديناميكي مغناطيسي غير مستقر (MHD) على ورقة غير مستقرة ثلاثية الأبعاد. عادة ما يتم تطبيق مجال مغناطيسي على السطح ؛ بالإضافة إلى ذلك، من المفترض أن السائل يوصل الكهرباء. كما يتم النظر في الدورات الدقيقة الأخرى. يتم حل المشكلة المادية بمساعدة المعادلات الأساسية، ويتم تقليل تعقيد المشكلة باستخدام متغيرات التشابه. في النهج الحالي، يتم استخدام طريقة تحليل المثلية (HAM). يتم النظر في الحرارة وعامل احتكاك الجلد ودرجة الحرارة والحركات الدقيقة والسرعة المرتبطة بالمعلمات الناشئة ومعدلات النقل. يزداد سمك الطبقة الحدودية مع زيادة معامل الدوامة. عندما يزداد حجم المجال المغناطيسي، ينخفض معامل احتكاك الجلد. يتم تقريب متغيرات الحالة حتى ستة منازل عشرية عدديًا. يتم حساب القيم العددية لـ −f″(0) و −θ′(0) إلى منازل عشرية أعلى ومقارنتها بالأدبيات المتاحة للتحقق من صحة النتائج. تتم مقارنة النتائج التي تم الحصول عليها مع الأدبيات المتاحة ؛ يتم تأكيد النتائج هنا، ويتم إظهار أداء لحم الخنزير.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2024.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2024.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ahmad Bin Azim; Asad Ali; Abdul Samad Khan; Fuad A. Awwad; Sumbal Ali; Emad A. A. Ismail;Multi-criteria decision-making (MCDM) approaches prove to be effective and reliable in addressing problems under uncertain conditions. The q-spherical fuzzy rough set (q-SFRS) represents the latest advancement in fuzzy set theory. This article aims to introduce a novel approach, q-spherical fuzzy rough Combinative Distance-based Assessment (q-SFR-CODAS), by integrating CODAS with q-SFR set to address MCDM problems. The method utilizes the Hamming distance as the primary measure and the Euclidean distance as the secondary measure to assess the desirability of alternatives, calculated concerning the negative-ideal solution. Additionally, an illustrative example is presented to demonstrate the applicability of the proposed methodology. A comprehensive sensitivity analysis is conducted to validate the results of q-SFR-CODAS, comparing them with existing MCDM methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3412193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3412193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech RepublicPublisher:Springer Science and Business Media LLC Shuo Li; Samreen; Saif Ullah; Muhammad Bilal Riaz; Fuad A. Awwad; Shewafera Wondimagegnhu Teklu;pmid: 38429318
pmc: PMC11310334
AbstractIn recent years, alcohol addiction has become a major public health concern and a global threat due to its potential negative health and social impacts. Beyond the health consequences, the detrimental consumption of alcohol results in substantial social and economic burdens on both individuals and society as a whole. Therefore, a proper understanding and effective control of the spread of alcohol addictive behavior has become an appealing global issue to be solved. In this study, we develop a new mathematical model of alcohol addiction with treatment class. We analyze the dynamics of the alcohol addiction model for the first time using advanced operators known as fractal–fractional operators, which incorporate two distinct fractal and fractional orders with the well-known Caputo derivative based on power law kernels. The existence and uniqueness of the newly developed fractal–fractional alcohol addiction model are shown using the Picard–Lindelöf and fixed point theories. Initially, a comprehensive qualitative analysis of the alcohol addiction fractional model is presented. The possible equilibria of the model and the threshold parameter called the reproduction number are evaluated theoretically and numerically. The boundedness and biologically feasible region for the model are derived. To assess the stability of the proposed model, the Ulam–Hyers coupled with the Ulam–Hyers–Rassias stability criteria are employed. Moreover, utilizing effecting numerical schemes, the models are solved numerically and a detailed simulation and discussion are presented. The model global dynamics are shown graphically for various values of fractional and fractal dimensions. The present study aims to provide valuable insights for the understanding the dynamics and control of alcohol addiction within a community.
Scientific Reports arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2024 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-54578-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2024 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-54578-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Fuad A. Awwad; Emad A. A. Ismail; Waris Khan; Taza Gul; Abdul Samad Khan;doi: 10.3390/sym15101811
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of heat sources/sinks. Through proper transformation, all partial differential equations are transformed into a non-linear ODE scheme. A new set of variables is presented in the directive to get the first-order convectional equations and then solved numerically using bvp4c MATLAB, embedded in the function. The proposed model is validated after calculating the error estimation and obtaining the residual error. The influence of various factors on the velocity, energy, concentration, and density of motile microorganisms is examined and studied. The analysis describes and addresses all physical measures of concentration such as Skin Friction (SF), Sherwood number, the density of motile microorganisms, and Nusselt number. To validate the present study, a comparison is conducted with previous studies, and excellent correspondence is found. In addition, the ND-Solve approach is utilized to confirm the bvp4c. The mathematical model is confirmed through error analysis. This study provides the platform for industrial applications such as cooling capacity polymers, heat exchange, and chemical production sectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:World Scientific Pub Co Pte Ltd Zafar Mahmood; Khadija Rafique; Umar Khan; Sidra Jubair; Fuad A. Awwad; Emad A. A. Ismail;This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al2O3) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al2O3 nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction ([Formula: see text]) magnetic [Formula: see text] and unsteadiness (A) increase toward mixed convection ([Formula: see text]). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter [Formula: see text] The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter [Formula: see text] and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter [Formula: see text] and Bejan number increases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984924503354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984924503354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:MDPI AG Authors: Fuad A. Awwad; Emad A. A. Ismail; Taza Gul;doi: 10.3390/sym15061288
This paper explores the numerical optimization of heat and mass transfer in the buoyancy-driven Al2O3-water nanofluid flow containing electrified Al2O3-nanoparticles adjacent to a symmetrically-vertical plane wall. The proposed model becomes a set of nonlinear problems through similarity transformations. The nonlinear problem is solved using the bvp4c method. The results of the proposed model concerning heat and mass transfer with nanoparticle electrification and buoyancy parameters are depicted in the Figures and Tables. It was revealed that the electrification of nanoparticles enhances the heat and mass transfer capabilities of the Al2O3 water nanoliquid. As a result, the electrification of nanoparticles could be an important mechanism to improve the transmission of heat and mass in the flow of Al2O3-water nanofluids. Furthermore, the numerical solutions of the nanofluid model of heat/mass transfer using the deep neural network (DNN) along with the procedure of Bayesian regularization scheme (BRS), DNN-BRS, was carried out. The DNN process is provided by taking eight and ten neurons in the first and second hidden layers along with the log-sigmoid function.
Symmetry arrow_drop_down SymmetryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-8994/15/6/1288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15061288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Symmetry arrow_drop_down SymmetryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-8994/15/6/1288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15061288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Suzan Abdel-Rahman; Mohamed R. Abonazel; Fuad A. Awwad; B. M. Golam Kibria;doi: 10.3390/su15139856
The COVID-19 pandemic has created massive challenges for women’s employment. Women’s responsibilities were exacerbated by the closure of schools and child daycare facilities. Investigating the determinants of job losses among women is critical to avoiding dropouts and supporting re-entry into the labor market. This study investigates the factors driving women’s workforce losses during the pandemic in five Arab countries (Egypt, Tunisia, Morocco, Jordan, and Sudan). The current study focuses mainly on how COVID-19-induced responsibilities affected women’s employment during the pandemic. The study depends on the COVID-19 MENA Monitor Household Survey produced by the Economic Research Forum. The factor analysis of mixed data is used to construct the women’s responsibilities index that is made up of 18 variables. The mixed-effect logistic model is used to consider changes in working arrangements across economic activities. The results indicate that women with high family caregiving responsibilities were more likely to lose their jobs. Women working in the government sector and with health insurance were protected from job losses. Telecommuting played a significant role in helping women maintain their jobs. Work arrangements should be improved to consider increased unpaid domestic work. Family-friendly policies must be activated, and childcare leave must be facilitated and funded. The private sector should also be urged to improve workplace flexibility.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/13/9856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15139856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/13/9856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15139856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:World Scientific Pub Co Pte Ltd Md. Habibullah; Muhammad Arslan Khan; Muhammad Atif; Sohail Ahmad; Fuad A. Awwad; Emad A. A. Ismail;This document introduces a novel concept involving an Omni-Directional Guided Vane (ODGV) encompassing a vertical axis wind turbine (VAWT) with the goal of improving its overall performance. Extensive three-dimensional computational analysis of the airfoils used in this novel ODGV structure is conducted to investigate the impact of various geometric parameters. Diverse geometric configurations of the ODGV are explored to analyze wind flow behavior across the turbine utilizing a well-validated computational fluid dynamics (CFD) model. The numerical investigations employ the Reynolds Averaged Navier–Stokes (RANS) modeling approach with the k-epsilon turbulence model. The steady state governing equations are solved using the validated CFD solver STAR CCM+. The study considers three distinct inlet velocities: 3, 6, and 9[Formula: see text]m/s, with the aim of improving flow behavior and velocity through the ODGV. Four different modifications of the ODGV are examined, and the accuracy of the CFD model is affirmed through comparison with NACA airfoil data. Integration of the ODGV results in an enhanced self-starting behavior of the VAWT, leading to a reduction in the cut-in speed. Validation results demonstrate a strong agreement with the data obtained from CFD simulations. These results suggest that most shape ratios, except for 0.3 and 0.4 at Tip Speed Ratio (TSR) of 1.3 and 3, contribute to enhancing power and torque coefficients. Furthermore, the findings indicate that with a Sharpe ratio of 0.56, both torque and power coefficients could be improved by up to 48% and 58%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:World Scientific Pub Co Pte Ltd Muhammad Atif; Hamid Iftikhar Qureshi; Md. Habibullah; Muhammad Arslan Khan; Fuad A. Awwad; Emad A. A. Ismail;Tidal turbine arrays have undergone extensive research to determine the optimal spacing for efficient performance and reduced wake generation. Small-scale laboratory tests are typically conducted to analyze wake structures prior to deployment. These tests often result in conditions of extreme blockage due to channel narrowing in comparison to turbine size. The primary objective of this study is to investigate flow behavior around turbines under blockage conditions and their performance close to the free surface, both in current-only and wave-and-current scenarios. The methodology employed a combination of blade element momentum theory and computational fluid dynamics (CFD) integrating a virtual blade model (VBM) code. The findings of this study indicate potential enhancements in tidal turbine array performance of up to 7% in lateral arrangements and 11% in streamwise arrangements under blockage conditions. The wake is significantly influenced by surface waves, which also contribute to increased downstream turbine performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Asad Ullah; Hongxing Yao; Farid Ullah; Waris Khan; Humaira Gul; Fuad A. Awwad; Emad A. A. Ismail;Cette étude vise à étudier l'effet Joule, le rayonnement thermique et les effets de Coriolis dans l'écoulement micropolaire de magnétohydrodynamique instable (MHD) sur une feuille instable en 3D. Un champ magnétique est généralement appliqué à la surface ; en outre, on suppose que le fluide conduit l'électricité. D'autres micro-rotations sont également envisagées. Le problème physique est résolu à l'aide des équations fondamentales, et la complexité du problème est réduite à l'aide de variables de similarité. Dans la présente approche, la méthode d'analyse par homotopie (HAM) est utilisée. La chaleur, le facteur de frottement de la peau, la température, les micro-mouvements et la vitesse associés aux paramètres émergents et aux taux de transfert sont pris en compte. L'épaisseur de la couche limite augmente à mesure que le paramètre de vorticité augmente. Lorsque l'amplitude du champ magnétique augmente, le coefficient de frottement cutané diminue. Les variables d'état sont approximées jusqu'à six décimales numériquement. Les valeurs numériques de −f″(0) et −θ′(0) sont calculées avec des décimales plus élevées et comparées à la littérature disponible pour valider les résultats. Les résultats obtenus sont comparés à la littérature disponible ; les résultats sont ici corroborés, et la performance du JAMBON est démontrée. Este estudio tiene como objetivo investigar el efecto Joule, la radiación térmica y los efectos de Coriolis en el flujo micropolar de magnetohidrodinámica inestable (MHD) sobre una lámina inestable en 3-D. Normalmente se aplica un campo magnético a la superficie; además, se supone que el fluido está conduciendo electricidad. También se consideran otras microrrotaciones. El problema físico se resuelve con la ayuda de las ecuaciones fundamentales, y la complejidad del problema se reduce con el uso de variables de similitud. En el presente enfoque, se emplea el método de análisis de homotopía (HAM). Se considera el calor, el factor de fricción de la piel, la temperatura, los micro movimientos y la velocidad asociados con los parámetros emergentes y las tasas de transferencia. El espesor de la capa límite aumenta a medida que aumenta el parámetro de vorticidad. Cuando la magnitud del campo magnético aumenta, el coeficiente de fricción de la piel disminuye. Las variables de estado se aproximan hasta seis decimales numéricamente. Los valores numéricos de −f″(0) y −θ′(0) se calculan con decimales más altos y se comparan con la literatura disponible para validar los resultados. Los resultados obtenidos se comparan con la literatura disponible; los resultados aquí se corroboran y se demuestra el rendimiento del JAMÓN. This study aims to investigate the Joule effect, thermal radiation, and Coriolis effects in unsteady magnetohydrodynamics (MHD) micropolar flow over a 3-D unstable sheet. A magnetic field is typically applied to the surface; additionally, it is assumed that the fluid is conducting electricity. Other micro-rotations are also considered. The physical issue is resolved with the help of the fundamental equations, and the issue's complexity is reduced with the use of similarity variables. In the present approach, the homotopy analysis method (HAM) is employed. The heat, skin's friction factor, temperature, micro movements, and velocity associated with the emerging parameters and transfer rates are considered. The boundary layer thickness is increased as the parameter of vorticity increases. When the magnitude of the magnetic field increases, the skin friction coefficient decreases. The state variables are approximated up to six decimal places numerically. The numerical values of −f″(0) and −θ′(0) are computed to higher decimal places and compared with the available literature to validate the results. The outcomes obtained are compared with the available literature; the results here are corroborated, and the performance of the HAM is demonstrated. تهدف هذه الدراسة إلى التحقيق في تأثير الجول، والإشعاع الحراري، وآثار كوريوليس في تدفق هيدروديناميكي مغناطيسي غير مستقر (MHD) على ورقة غير مستقرة ثلاثية الأبعاد. عادة ما يتم تطبيق مجال مغناطيسي على السطح ؛ بالإضافة إلى ذلك، من المفترض أن السائل يوصل الكهرباء. كما يتم النظر في الدورات الدقيقة الأخرى. يتم حل المشكلة المادية بمساعدة المعادلات الأساسية، ويتم تقليل تعقيد المشكلة باستخدام متغيرات التشابه. في النهج الحالي، يتم استخدام طريقة تحليل المثلية (HAM). يتم النظر في الحرارة وعامل احتكاك الجلد ودرجة الحرارة والحركات الدقيقة والسرعة المرتبطة بالمعلمات الناشئة ومعدلات النقل. يزداد سمك الطبقة الحدودية مع زيادة معامل الدوامة. عندما يزداد حجم المجال المغناطيسي، ينخفض معامل احتكاك الجلد. يتم تقريب متغيرات الحالة حتى ستة منازل عشرية عدديًا. يتم حساب القيم العددية لـ −f″(0) و −θ′(0) إلى منازل عشرية أعلى ومقارنتها بالأدبيات المتاحة للتحقق من صحة النتائج. تتم مقارنة النتائج التي تم الحصول عليها مع الأدبيات المتاحة ؛ يتم تأكيد النتائج هنا، ويتم إظهار أداء لحم الخنزير.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2024.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2024.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ahmad Bin Azim; Asad Ali; Abdul Samad Khan; Fuad A. Awwad; Sumbal Ali; Emad A. A. Ismail;Multi-criteria decision-making (MCDM) approaches prove to be effective and reliable in addressing problems under uncertain conditions. The q-spherical fuzzy rough set (q-SFRS) represents the latest advancement in fuzzy set theory. This article aims to introduce a novel approach, q-spherical fuzzy rough Combinative Distance-based Assessment (q-SFR-CODAS), by integrating CODAS with q-SFR set to address MCDM problems. The method utilizes the Hamming distance as the primary measure and the Euclidean distance as the secondary measure to assess the desirability of alternatives, calculated concerning the negative-ideal solution. Additionally, an illustrative example is presented to demonstrate the applicability of the proposed methodology. A comprehensive sensitivity analysis is conducted to validate the results of q-SFR-CODAS, comparing them with existing MCDM methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3412193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3412193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech RepublicPublisher:Springer Science and Business Media LLC Shuo Li; Samreen; Saif Ullah; Muhammad Bilal Riaz; Fuad A. Awwad; Shewafera Wondimagegnhu Teklu;pmid: 38429318
pmc: PMC11310334
AbstractIn recent years, alcohol addiction has become a major public health concern and a global threat due to its potential negative health and social impacts. Beyond the health consequences, the detrimental consumption of alcohol results in substantial social and economic burdens on both individuals and society as a whole. Therefore, a proper understanding and effective control of the spread of alcohol addictive behavior has become an appealing global issue to be solved. In this study, we develop a new mathematical model of alcohol addiction with treatment class. We analyze the dynamics of the alcohol addiction model for the first time using advanced operators known as fractal–fractional operators, which incorporate two distinct fractal and fractional orders with the well-known Caputo derivative based on power law kernels. The existence and uniqueness of the newly developed fractal–fractional alcohol addiction model are shown using the Picard–Lindelöf and fixed point theories. Initially, a comprehensive qualitative analysis of the alcohol addiction fractional model is presented. The possible equilibria of the model and the threshold parameter called the reproduction number are evaluated theoretically and numerically. The boundedness and biologically feasible region for the model are derived. To assess the stability of the proposed model, the Ulam–Hyers coupled with the Ulam–Hyers–Rassias stability criteria are employed. Moreover, utilizing effecting numerical schemes, the models are solved numerically and a detailed simulation and discussion are presented. The model global dynamics are shown graphically for various values of fractional and fractal dimensions. The present study aims to provide valuable insights for the understanding the dynamics and control of alcohol addiction within a community.
Scientific Reports arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2024 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-54578-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2024 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-54578-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Fuad A. Awwad; Emad A. A. Ismail; Waris Khan; Taza Gul; Abdul Samad Khan;doi: 10.3390/sym15101811
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of heat sources/sinks. Through proper transformation, all partial differential equations are transformed into a non-linear ODE scheme. A new set of variables is presented in the directive to get the first-order convectional equations and then solved numerically using bvp4c MATLAB, embedded in the function. The proposed model is validated after calculating the error estimation and obtaining the residual error. The influence of various factors on the velocity, energy, concentration, and density of motile microorganisms is examined and studied. The analysis describes and addresses all physical measures of concentration such as Skin Friction (SF), Sherwood number, the density of motile microorganisms, and Nusselt number. To validate the present study, a comparison is conducted with previous studies, and excellent correspondence is found. In addition, the ND-Solve approach is utilized to confirm the bvp4c. The mathematical model is confirmed through error analysis. This study provides the platform for industrial applications such as cooling capacity polymers, heat exchange, and chemical production sectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:World Scientific Pub Co Pte Ltd Zafar Mahmood; Khadija Rafique; Umar Khan; Sidra Jubair; Fuad A. Awwad; Emad A. A. Ismail;This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al2O3) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al2O3 nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction ([Formula: see text]) magnetic [Formula: see text] and unsteadiness (A) increase toward mixed convection ([Formula: see text]). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter [Formula: see text] The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter [Formula: see text] and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter [Formula: see text] and Bejan number increases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984924503354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984924503354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:MDPI AG Authors: Fuad A. Awwad; Emad A. A. Ismail; Taza Gul;doi: 10.3390/sym15061288
This paper explores the numerical optimization of heat and mass transfer in the buoyancy-driven Al2O3-water nanofluid flow containing electrified Al2O3-nanoparticles adjacent to a symmetrically-vertical plane wall. The proposed model becomes a set of nonlinear problems through similarity transformations. The nonlinear problem is solved using the bvp4c method. The results of the proposed model concerning heat and mass transfer with nanoparticle electrification and buoyancy parameters are depicted in the Figures and Tables. It was revealed that the electrification of nanoparticles enhances the heat and mass transfer capabilities of the Al2O3 water nanoliquid. As a result, the electrification of nanoparticles could be an important mechanism to improve the transmission of heat and mass in the flow of Al2O3-water nanofluids. Furthermore, the numerical solutions of the nanofluid model of heat/mass transfer using the deep neural network (DNN) along with the procedure of Bayesian regularization scheme (BRS), DNN-BRS, was carried out. The DNN process is provided by taking eight and ten neurons in the first and second hidden layers along with the log-sigmoid function.
Symmetry arrow_drop_down SymmetryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-8994/15/6/1288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15061288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Symmetry arrow_drop_down SymmetryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-8994/15/6/1288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15061288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Suzan Abdel-Rahman; Mohamed R. Abonazel; Fuad A. Awwad; B. M. Golam Kibria;doi: 10.3390/su15139856
The COVID-19 pandemic has created massive challenges for women’s employment. Women’s responsibilities were exacerbated by the closure of schools and child daycare facilities. Investigating the determinants of job losses among women is critical to avoiding dropouts and supporting re-entry into the labor market. This study investigates the factors driving women’s workforce losses during the pandemic in five Arab countries (Egypt, Tunisia, Morocco, Jordan, and Sudan). The current study focuses mainly on how COVID-19-induced responsibilities affected women’s employment during the pandemic. The study depends on the COVID-19 MENA Monitor Household Survey produced by the Economic Research Forum. The factor analysis of mixed data is used to construct the women’s responsibilities index that is made up of 18 variables. The mixed-effect logistic model is used to consider changes in working arrangements across economic activities. The results indicate that women with high family caregiving responsibilities were more likely to lose their jobs. Women working in the government sector and with health insurance were protected from job losses. Telecommuting played a significant role in helping women maintain their jobs. Work arrangements should be improved to consider increased unpaid domestic work. Family-friendly policies must be activated, and childcare leave must be facilitated and funded. The private sector should also be urged to improve workplace flexibility.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/13/9856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15139856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/13/9856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15139856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:World Scientific Pub Co Pte Ltd Md. Habibullah; Muhammad Arslan Khan; Muhammad Atif; Sohail Ahmad; Fuad A. Awwad; Emad A. A. Ismail;This document introduces a novel concept involving an Omni-Directional Guided Vane (ODGV) encompassing a vertical axis wind turbine (VAWT) with the goal of improving its overall performance. Extensive three-dimensional computational analysis of the airfoils used in this novel ODGV structure is conducted to investigate the impact of various geometric parameters. Diverse geometric configurations of the ODGV are explored to analyze wind flow behavior across the turbine utilizing a well-validated computational fluid dynamics (CFD) model. The numerical investigations employ the Reynolds Averaged Navier–Stokes (RANS) modeling approach with the k-epsilon turbulence model. The steady state governing equations are solved using the validated CFD solver STAR CCM+. The study considers three distinct inlet velocities: 3, 6, and 9[Formula: see text]m/s, with the aim of improving flow behavior and velocity through the ODGV. Four different modifications of the ODGV are examined, and the accuracy of the CFD model is affirmed through comparison with NACA airfoil data. Integration of the ODGV results in an enhanced self-starting behavior of the VAWT, leading to a reduction in the cut-in speed. Validation results demonstrate a strong agreement with the data obtained from CFD simulations. These results suggest that most shape ratios, except for 0.3 and 0.4 at Tip Speed Ratio (TSR) of 1.3 and 3, contribute to enhancing power and torque coefficients. Furthermore, the findings indicate that with a Sharpe ratio of 0.56, both torque and power coefficients could be improved by up to 48% and 58%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:World Scientific Pub Co Pte Ltd Muhammad Atif; Hamid Iftikhar Qureshi; Md. Habibullah; Muhammad Arslan Khan; Fuad A. Awwad; Emad A. A. Ismail;Tidal turbine arrays have undergone extensive research to determine the optimal spacing for efficient performance and reduced wake generation. Small-scale laboratory tests are typically conducted to analyze wake structures prior to deployment. These tests often result in conditions of extreme blockage due to channel narrowing in comparison to turbine size. The primary objective of this study is to investigate flow behavior around turbines under blockage conditions and their performance close to the free surface, both in current-only and wave-and-current scenarios. The methodology employed a combination of blade element momentum theory and computational fluid dynamics (CFD) integrating a virtual blade model (VBM) code. The findings of this study indicate potential enhancements in tidal turbine array performance of up to 7% in lateral arrangements and 11% in streamwise arrangements under blockage conditions. The wake is significantly influenced by surface waves, which also contribute to increased downstream turbine performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s0217984923410142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu