- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, FrancePublisher:Wiley Aurore Maureaud; Hubert Du Pontavice; Hubert Du Pontavice; Didier Gascuel; William W. L. Cheung; Gabriel Reygondeau; Gabriel Reygondeau;doi: 10.1111/gcb.14944
pmid: 31802576
AbstractSea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.
Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, DenmarkPublisher:Wiley Marie Nevoux; Hubert Du Pontavice; Hubert Du Pontavice; Etienne Prévost; Etienne Prévost; Maxime Olmos; Timothy F. Sheehan; Gérald Chaput; Etienne Rivot; Jérôme Guitton; Katherine E. Mills; Mark R. Payne;doi: 10.1111/gcb.14913
pmid: 31701595
AbstractA major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock groups (CSG) in North America (NA) and Southern Europe (SE) over the period 1971–2014. We found strong coherence in the temporal variation in postsmolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor of 1.8 over the 1971–2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the postsmolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for populations from NA, 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for populations from SE, 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate‐induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.
Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 France, Denmark, FrancePublisher:Public Library of Science (PLoS) Hubert Du Pontavice; Hubert Du Pontavice; Didier Gascuel; Mathieu Colléter; Maria Lourdes D. Palomares; Daniel Pauly; William W. L. Cheung; Aurore Maureaud;The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.
Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0182826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0182826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 FrancePublisher:Wiley Funded by:EC | BYONIC, NSERC, ANR | CONVINCEEC| BYONIC ,NSERC ,ANR| CONVINCEAlessandro Tagliabue; Nicolas Barrier; Hubert Du Pontavice; Lester Kwiatkowski; Olivier Aumont; Laurent Bopp; William W. L. Cheung; Didier Gascuel; Olivier Maury;doi: 10.1111/gcb.15316
pmid: 32970390
AbstractEarth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from −12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter‐annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%–80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.
CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2020License: CC BY NC NDData sources: HAL-Ecole des Ponts ParisTechArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2020License: CC BY NC NDData sources: HAL-Ecole des Ponts ParisTechArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, Australia, Spain, France, Spain, United States, Germany, France, France, France, France, France, Australia, Australia, France, France, Spain, Australia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | TRIATLAS, NSERC, ANR | SOMBEE +7 projectsEC| TRIATLAS ,NSERC ,ANR| SOMBEE ,UKRI| GCRF One Ocean Hub ,ARC| Discovery Projects - Grant ID: DP150102656 ,EC| MISSION ATLANTIC ,ARC| Discovery Projects - Grant ID: DP190102293 ,ARC| Discovery Projects - Grant ID: DP170104240 ,ANR| CIGOEF ,EC| FutureMARESHubert Du Pontavice; Jeroen Steenbeek; Cheryl S. Harrison; Cheryl S. Harrison; William W. L. Cheung; Nicolas Barrier; Camilla Novaglio; Jasmin G. John; Colleen M. Petrik; Villy Christensen; Derek P. Tittensor; Derek P. Tittensor; Gregory L. Britten; Charles A. Stock; Jose A. Fernandes-Salvador; Andrea Bryndum-Buchholz; Heike K. Lotze; Elizabeth A. Fulton; Elizabeth A. Fulton; Laurent Bopp; Matthias Büchner; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Yunne-Jai Shin; Jason D. Everett; Jason D. Everett; Jason D. Everett; Daniele Bianchi; Tyler D. Eddy; Jason S. Link; Kelly Ortega-Cisneros; Jonathan Rault; John P. Dunne; Olivier Maury; Marta Coll; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Julia L. Blanchard; Juliano Palacios-Abrantes; Juliano Palacios-Abrantes; Lynne J. Shannon;AbstractProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 141 citations 141 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 54visibility views 54 download downloads 159 Powered bymore_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Funded by:NSERC, SSHRCNSERC ,SSHRCDidier Gascuel; Charles A. Stock; Hubert Du Pontavice; Hubert Du Pontavice; Gabriel Reygondeau; William W. L. Cheung;doi: 10.1111/gcb.15576
pmid: 33660891
AbstractClimate change impacts on marine life in the world ocean are expected to accelerate over the 21st century, affecting the structure and functioning of food webs. We analyzed a key aspect of this issue, focusing on the impact of changes in biomass flow within marine food webs and the resulting effects on ecosystem biomass and production. We used a modeling framework based on a parsimonious quasi‐physical representation of biomass flow through the food web, to explore the future of marine consumer biomass and production at the global scale over the 21st century. Biomass flow is determined by three climate‐related factors: primary production entering the food web, trophic transfer efficiency describing losses in biomass transfers from one trophic level (TL) to the next, and flow kinetic measuring the speed of biomass transfers within the food web. Using climate projections of three earth system models, we calculated biomass and production at each TL on a 1° latitude ×1° longitude grid of the global ocean under two greenhouse gas emission scenarios. We show that the alterations of the trophic functioning of marine ecosystems, mainly driven by faster and less efficient biomass transfers and decreasing primary production, would lead to a projected decline in total consumer biomass by 18.5% by 2090–2099 relative to 1986–2005 under the “no mitigation policy” scenario. The projected decrease in transfer efficiency is expected to amplify impacts at higher TLs, leading to a 21.3% decrease in abundance of predators and thus to a change in the overall trophic structure of marine ecosystems. Marine animal production is also projected to decline but to a lesser extent than biomass. Our study highlights that the temporal and spatial projected changes in biomass and production would imply direct repercussions on the future of world fisheries and beyond all services provided by Ocean.
Mémoires en Sciences... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Mémoires en Sciences... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review , Other literature type 2021 France, Australia, Australia, United StatesPublisher:Elsevier BV Mathieu Colléter; Kelly A. Kearney; Elizabeth A. Fulton; Elizabeth A. Fulton; Hubert Du Pontavice; Hubert Du Pontavice; Tilla Roy; Julia L. Blanchard; Colleen M. Petrik; Colette C. C. Wabnitz; Colette C. C. Wabnitz; Colette C. C. Wabnitz; Reg Watson; Didier Gascuel; Joey R. Bernhardt; Joey R. Bernhardt; Joey R. Bernhardt; Ryan R. Rykaczewski; Ryan R. Rykaczewski; Charles A. Stock; Tyler D. Eddy; Tyler D. Eddy; William W. L. Cheung; Rebecca L. Selden;pmid: 33097289
Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. Here, we review the processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macroscale variations suggest that ecosystem-scale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/4923w0fcData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerTrends in Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2020.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/4923w0fcData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerTrends in Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2020.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, FrancePublisher:Wiley Aurore Maureaud; Hubert Du Pontavice; Hubert Du Pontavice; Didier Gascuel; William W. L. Cheung; Gabriel Reygondeau; Gabriel Reygondeau;doi: 10.1111/gcb.14944
pmid: 31802576
AbstractSea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.
Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, DenmarkPublisher:Wiley Marie Nevoux; Hubert Du Pontavice; Hubert Du Pontavice; Etienne Prévost; Etienne Prévost; Maxime Olmos; Timothy F. Sheehan; Gérald Chaput; Etienne Rivot; Jérôme Guitton; Katherine E. Mills; Mark R. Payne;doi: 10.1111/gcb.14913
pmid: 31701595
AbstractA major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock groups (CSG) in North America (NA) and Southern Europe (SE) over the period 1971–2014. We found strong coherence in the temporal variation in postsmolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor of 1.8 over the 1971–2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the postsmolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for populations from NA, 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for populations from SE, 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate‐induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.
Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 France, Denmark, FrancePublisher:Public Library of Science (PLoS) Hubert Du Pontavice; Hubert Du Pontavice; Didier Gascuel; Mathieu Colléter; Maria Lourdes D. Palomares; Daniel Pauly; William W. L. Cheung; Aurore Maureaud;The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.
Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0182826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0182826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 FrancePublisher:Wiley Funded by:EC | BYONIC, NSERC, ANR | CONVINCEEC| BYONIC ,NSERC ,ANR| CONVINCEAlessandro Tagliabue; Nicolas Barrier; Hubert Du Pontavice; Lester Kwiatkowski; Olivier Aumont; Laurent Bopp; William W. L. Cheung; Didier Gascuel; Olivier Maury;doi: 10.1111/gcb.15316
pmid: 32970390
AbstractEarth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from −12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter‐annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%–80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.
CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2020License: CC BY NC NDData sources: HAL-Ecole des Ponts ParisTechArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02999064Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2020License: CC BY NC NDData sources: HAL-Ecole des Ponts ParisTechArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, Australia, Spain, France, Spain, United States, Germany, France, France, France, France, France, Australia, Australia, France, France, Spain, Australia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | TRIATLAS, NSERC, ANR | SOMBEE +7 projectsEC| TRIATLAS ,NSERC ,ANR| SOMBEE ,UKRI| GCRF One Ocean Hub ,ARC| Discovery Projects - Grant ID: DP150102656 ,EC| MISSION ATLANTIC ,ARC| Discovery Projects - Grant ID: DP190102293 ,ARC| Discovery Projects - Grant ID: DP170104240 ,ANR| CIGOEF ,EC| FutureMARESHubert Du Pontavice; Jeroen Steenbeek; Cheryl S. Harrison; Cheryl S. Harrison; William W. L. Cheung; Nicolas Barrier; Camilla Novaglio; Jasmin G. John; Colleen M. Petrik; Villy Christensen; Derek P. Tittensor; Derek P. Tittensor; Gregory L. Britten; Charles A. Stock; Jose A. Fernandes-Salvador; Andrea Bryndum-Buchholz; Heike K. Lotze; Elizabeth A. Fulton; Elizabeth A. Fulton; Laurent Bopp; Matthias Büchner; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Yunne-Jai Shin; Jason D. Everett; Jason D. Everett; Jason D. Everett; Daniele Bianchi; Tyler D. Eddy; Jason S. Link; Kelly Ortega-Cisneros; Jonathan Rault; John P. Dunne; Olivier Maury; Marta Coll; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Julia L. Blanchard; Juliano Palacios-Abrantes; Juliano Palacios-Abrantes; Lynne J. Shannon;AbstractProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 141 citations 141 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 54visibility views 54 download downloads 159 Powered bymore_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Funded by:NSERC, SSHRCNSERC ,SSHRCDidier Gascuel; Charles A. Stock; Hubert Du Pontavice; Hubert Du Pontavice; Gabriel Reygondeau; William W. L. Cheung;doi: 10.1111/gcb.15576
pmid: 33660891
AbstractClimate change impacts on marine life in the world ocean are expected to accelerate over the 21st century, affecting the structure and functioning of food webs. We analyzed a key aspect of this issue, focusing on the impact of changes in biomass flow within marine food webs and the resulting effects on ecosystem biomass and production. We used a modeling framework based on a parsimonious quasi‐physical representation of biomass flow through the food web, to explore the future of marine consumer biomass and production at the global scale over the 21st century. Biomass flow is determined by three climate‐related factors: primary production entering the food web, trophic transfer efficiency describing losses in biomass transfers from one trophic level (TL) to the next, and flow kinetic measuring the speed of biomass transfers within the food web. Using climate projections of three earth system models, we calculated biomass and production at each TL on a 1° latitude ×1° longitude grid of the global ocean under two greenhouse gas emission scenarios. We show that the alterations of the trophic functioning of marine ecosystems, mainly driven by faster and less efficient biomass transfers and decreasing primary production, would lead to a projected decline in total consumer biomass by 18.5% by 2090–2099 relative to 1986–2005 under the “no mitigation policy” scenario. The projected decrease in transfer efficiency is expected to amplify impacts at higher TLs, leading to a 21.3% decrease in abundance of predators and thus to a change in the overall trophic structure of marine ecosystems. Marine animal production is also projected to decline but to a lesser extent than biomass. Our study highlights that the temporal and spatial projected changes in biomass and production would imply direct repercussions on the future of world fisheries and beyond all services provided by Ocean.
Mémoires en Sciences... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Mémoires en Sciences... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review , Other literature type 2021 France, Australia, Australia, United StatesPublisher:Elsevier BV Mathieu Colléter; Kelly A. Kearney; Elizabeth A. Fulton; Elizabeth A. Fulton; Hubert Du Pontavice; Hubert Du Pontavice; Tilla Roy; Julia L. Blanchard; Colleen M. Petrik; Colette C. C. Wabnitz; Colette C. C. Wabnitz; Colette C. C. Wabnitz; Reg Watson; Didier Gascuel; Joey R. Bernhardt; Joey R. Bernhardt; Joey R. Bernhardt; Ryan R. Rykaczewski; Ryan R. Rykaczewski; Charles A. Stock; Tyler D. Eddy; Tyler D. Eddy; William W. L. Cheung; Rebecca L. Selden;pmid: 33097289
Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. Here, we review the processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macroscale variations suggest that ecosystem-scale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/4923w0fcData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerTrends in Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2020.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/4923w0fcData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerTrends in Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2020.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu