- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:Wiley Funded by:DFGDFGFelix Fischer; Michael Hauser; Maximilian Hauck; Stephan Herrmann; Sebastian Fendt; Hyeondeok Jeong; Christian Lenser; Norbert H. Menzler; Hartmut Spliethoff;doi: 10.1002/ese3.334
AbstractIn the context of energy transition and climate change, a combination of highly efficient modern solid oxide fuel cells (SOFC) and thermo‐chemical conversion of biogenic residues could complement other intermittent renewable sources such as wind and solar. In order to reduce required gas cleaning efforts and to increase the process efficiency, the influence of hydrocarbons on SOFC performance is experimentally investigated in this study. For the first time, the operation of Ni/YSZ anode‐supported cells in Jülich F10 stacks is performed with pre‐reformed and with bio‐syngas containing full hydrocarbon content at realistic current densities. Sulfur and other impurities were removed in both cases. No degradation could be observed within normal operation on clean gas. With the tar reformer bypassed, the pressure drop over the stack increased due to severe carbon deposition on the anode substrate and the nickel current collector mesh inside the SOFC stack, so that operation had to be terminated after five hours. This behavior is different from single‐cell tests, where electrochemical degradation is the limiting factor. The results show that improvements are not only necessary for cell materials and that future research must also consider other stack components.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:The Electrochemical Society Michael Hauser; Stephan Herrmann; Maximilian Hauck; Sebastian Fendt; Hyeondeok Jeong; Christian Lenser; Norbert H. Menzler; Hartmut Spliethoff;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/09101.0697ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/09101.0697ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Maximilian Hauck; Stephan Herrmann; Hartmut Spliethoff;A thermodynamic Aspen Plus simulation model for a reversible solid oxide fuel cell (RSOFC) is presented and evaluated. It is composed of an electrolysis and a fuel cell module. The latter is based on an existing non reversible SOFC model. The electrolysis model simulates water electrolysis as well as catalytic reactions of inlet gases. The model has been validated using data from literature. It has been found that the support layer on fuel electrode supported cells has to be treated differently in terms of diffusion than the active layer. Simulation results show that for the investigated cell parameters, the positive effect of adding CO2 to the steam feed on the electrolysis process is due to wateregas-shift reactions and not CO2 electrolysis. An analysis of outlet gas compositions in electrolysis mode showed that the assumption of the cell as an equilibrium reactor was justified. A parameter study has been conducted, showing that increasing the operation temperature and pressure can improve the overall performance, while changing the inlet gas compositions in general improves either fuel cell or electrolysis mode and deteriorates performance for the other mode.
MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:Wiley Funded by:DFGDFGFelix Fischer; Michael Hauser; Maximilian Hauck; Stephan Herrmann; Sebastian Fendt; Hyeondeok Jeong; Christian Lenser; Norbert H. Menzler; Hartmut Spliethoff;doi: 10.1002/ese3.334
AbstractIn the context of energy transition and climate change, a combination of highly efficient modern solid oxide fuel cells (SOFC) and thermo‐chemical conversion of biogenic residues could complement other intermittent renewable sources such as wind and solar. In order to reduce required gas cleaning efforts and to increase the process efficiency, the influence of hydrocarbons on SOFC performance is experimentally investigated in this study. For the first time, the operation of Ni/YSZ anode‐supported cells in Jülich F10 stacks is performed with pre‐reformed and with bio‐syngas containing full hydrocarbon content at realistic current densities. Sulfur and other impurities were removed in both cases. No degradation could be observed within normal operation on clean gas. With the tar reformer bypassed, the pressure drop over the stack increased due to severe carbon deposition on the anode substrate and the nickel current collector mesh inside the SOFC stack, so that operation had to be terminated after five hours. This behavior is different from single‐cell tests, where electrochemical degradation is the limiting factor. The results show that improvements are not only necessary for cell materials and that future research must also consider other stack components.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:The Electrochemical Society Michael Hauser; Stephan Herrmann; Maximilian Hauck; Sebastian Fendt; Hyeondeok Jeong; Christian Lenser; Norbert H. Menzler; Hartmut Spliethoff;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/09101.0697ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/09101.0697ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Maximilian Hauck; Stephan Herrmann; Hartmut Spliethoff;A thermodynamic Aspen Plus simulation model for a reversible solid oxide fuel cell (RSOFC) is presented and evaluated. It is composed of an electrolysis and a fuel cell module. The latter is based on an existing non reversible SOFC model. The electrolysis model simulates water electrolysis as well as catalytic reactions of inlet gases. The model has been validated using data from literature. It has been found that the support layer on fuel electrode supported cells has to be treated differently in terms of diffusion than the active layer. Simulation results show that for the investigated cell parameters, the positive effect of adding CO2 to the steam feed on the electrolysis process is due to wateregas-shift reactions and not CO2 electrolysis. An analysis of outlet gas compositions in electrolysis mode showed that the assumption of the cell as an equilibrium reactor was justified. A parameter study has been conducted, showing that increasing the operation temperature and pressure can improve the overall performance, while changing the inlet gas compositions in general improves either fuel cell or electrolysis mode and deteriorates performance for the other mode.
MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert MediaTUM arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.01.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu