
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of internal hydrocarbon reforming during coupled operation of a biomass gasifier with hot gas cleaning and SOFC stacks

doi: 10.1002/ese3.334
AbstractIn the context of energy transition and climate change, a combination of highly efficient modern solid oxide fuel cells (SOFC) and thermo‐chemical conversion of biogenic residues could complement other intermittent renewable sources such as wind and solar. In order to reduce required gas cleaning efforts and to increase the process efficiency, the influence of hydrocarbons on SOFC performance is experimentally investigated in this study. For the first time, the operation of Ni/YSZ anode‐supported cells in Jülich F10 stacks is performed with pre‐reformed and with bio‐syngas containing full hydrocarbon content at realistic current densities. Sulfur and other impurities were removed in both cases. No degradation could be observed within normal operation on clean gas. With the tar reformer bypassed, the pressure drop over the stack increased due to severe carbon deposition on the anode substrate and the nickel current collector mesh inside the SOFC stack, so that operation had to be terminated after five hours. This behavior is different from single‐cell tests, where electrochemical degradation is the limiting factor. The results show that improvements are not only necessary for cell materials and that future research must also consider other stack components.
biomass gasification, Technology, solid oxide fuel cells, tar reforming, T, Science, Q, bio‐syngas, biomass gasification; bio-syngas; solid oxide fuel cells; tar reforming, info:eu-repo/classification/ddc/620, ddc: ddc:, ddc: ddc:620
biomass gasification, Technology, solid oxide fuel cells, tar reforming, T, Science, Q, bio‐syngas, biomass gasification; bio-syngas; solid oxide fuel cells; tar reforming, info:eu-repo/classification/ddc/620, ddc: ddc:, ddc: ddc:620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
