- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors:Marta Miquel;
Marta Miquel
Marta Miquel in OpenAIREMercè Correa;
Carles Sanchis-Segura; Carlos M.G. Aragon;Mercè Correa
Mercè Correa in OpenAIREpmid: 15694276
Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV pmid: 11701205
In order to evaluate the effect of hypotaurine on ethanol-induced locomotion, different groups of mice received an injection of saline or 5.62, 8.45, 11.25, 16.87 or 33.75 mg/kg of hypotaurine 30 min prior to administering ethanol (2.4 g/kg). The duration of the effect of hypotaurine was explored by treating animals with ethanol 0, 30, 60 and 90 min after hypotaurine pretreatment. The effect of hypotaurine on acute stimulating ethanol locomotion was evaluated by pretreating animals with saline or 11.25 mg/kg of hypotaurine 30 or 60 min before ethanol (1.6, 2.4, 3.2 g/kg) or saline injections. Hypotaurine (11.25 mg/kg) required 30 min to boost, specifically ethanol-stimulated locomotion (2.4 g/kg). These results suggest a central locus for the interaction, firstly, because blood ethanol levels were not different between hypotaurine and saline pretreated mice, and, secondly, because a cotreatment with beta-alanine (22 mg/kg), a beta-amino acid that counteracts the transfer of hypotaurine across the blood-brain barrier (BBB), prevented the enhancement in ethanol-induced locomotion produced by hypotaurine.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(01)00602-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(01)00602-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Wiley pmid: 16046870
Background:d‐Penicillamine, a sulfhydryl amino acid derived from penicillin, is a highly selective agent for sequestering in vivo acetaldehyde, the first metabolic product of ethanol. A substantial amount of research supports the idea that brain acetaldehyde, produced by central ethanol metabolism, plays a key role in determining some of the behavioral effects of ethanol administration. This study addressed two questions. First, we tested if d‐penicillamine was able to modify the depressant effects of acetaldehyde on behavior. Second, we studied the effect of d‐penicillamine on ethanol‐induced behavioral stimulation.Methods:Mice were pretreated with 75.00 mg/kg of d‐penicillamine, and 30 min later, they received acetaldehyde at 0, 100, 200, or 300 mg/kg intraperitoneally. Different groups of animals were treated with 0.0, 37.5, 75, 150, or 300 mg/kg of d‐penicillamine simultaneously 30, 90, 150, or 210 min before the intraperitoneal administration of saline or 1.2, 1.8, 2.4, 3.0, or 3.6 g/kg of ethanol, respectively. The specificity of d‐penicillamine effects was addressed using two drugs: cocaine (4 mg/kg) and caffeine (15 mg/kg).Results:Our results revealed that behavioral depression caused by acetaldehyde (200 and 300 mg/kg) could be attenuated by d‐penicillamine treatment. In addition, d‐penicillamine was also effective in lowering behavioral locomotion induced by ethanol (1.8 and 2.4 g/kg), without altering spontaneous locomotor activity. This sulfhydryl amino acid specifically modified the effect of ethanol on locomotion because cocaine‐ or caffeine‐induced locomotion was unaffected. In addition, blood ethanol levels were not different between d‐penicillamine‐ and saline‐pretreated mice.Conclusions:Behavioral effects produced by acetaldehyde and ethanol are blocked when animals are treated with d‐penicillamine, an effective sequestration agent for acetaldehyde. These results suggest that some of the psychopharmacological effects, classically attributed to ethanol, could be mediated by its first metabolite, acetaldehyde.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/01.alc.0000171945.30494.af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/01.alc.0000171945.30494.af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Font Hurtado, Laura;MIQUEL, MARTA;
González Aragón, Carlos Manuel;MIQUEL, MARTA
MIQUEL, MARTA in OpenAIREpmid: 18155096
It has been suggested that some of the behavioral effects produced by ethanol are mediated by its first metabolite, acetaldehyde. The present research addressed the hypothesis that catalase-dependent metabolism of ethanol to acetaldehyde in the brain is an important step in the production of ethanol-related affective properties. Firstly, we investigated the contribution of brain catalase in the acquisition of ethanol-induced conditioned place preference (CPP). Secondly, the specificity of the catalase inhibitor 3-amino-1,2,4-triazole (AT) was evaluated with morphine- and cocaine-induced CPP. Finally, to investigate the role of catalase in the process of relapse to ethanol seeking caused by re-exposure to ethanol, after an initial conditioning and extinction, mice were primed with saline and ethanol or AT and ethanol and tested for reinstatement of CPP. Conditioned place preference was blocked in animals treated with AT and ethanol. Morphine and cocaine CPP were unaffected by AT treatment. However, the reinstatement of place preference was not modified by catalase inhibition. Taken together, the results of the present study indicate that the brain catalase-H(2)O(2) system contributes to the acquisition of affective-dependent learning induced by ethanol, and support the involvement of centrally-formed acetaldehyde in the formation of positive affective memories produced by ethanol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physbeh.2007.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
visibility 21visibility views 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physbeh.2007.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors:Marta Miquel;
Carlos M.G. Aragon;Marta Miquel
Marta Miquel in OpenAIREHéctor M. Manrique;
Héctor M. Manrique
Héctor M. Manrique in OpenAIREpmid: 16102377
The involvement of catalase in ethanol-induced locomotion has been clearly proven. However, studies addressing the role of this enzyme in the effects that ethanol exerts on memory are lacking. In the present study, the social recognition test (SRT) was used to evaluate ethanol effects on memory. In this test, the reduction in investigation time of a juvenile conspecific, when this social stimulus is presented for the second time, is considered a reliable index of memory. Exploration ratios (ER) were calculated to evaluate the recognition capacity of mice. Ethanol (0.0, 0.5, 1.0 or 1.5g/kg, i.p.) was administered immediately after the first juvenile presentation, and 2h later the juvenile was re-exposed to the adult. Additionally, adult mice received aminotriazole (AT) or sodium azide (two catalase inhibitors) 5h or 30 min before juvenile presentation, respectively. Ethanol (1.0 and 1.5g/kg) was able to reduce ER, indicating an improving effect on memory. This improvement was prevented by either AT or sodium azide pre-treatment. However, neither AT nor sodium azide attenuated the memory-enhancing capacity of NMDA or nicotine, suggesting a specific interaction between catalase inhibitors and ethanol in their effects on memory. The present results suggest that brain catalase activity could mediate the memory-enhancing capacity of ethanol and add further support to the idea that this enzyme mediates some of the psychopharmacological effects produced by ethanol.
Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2005.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2005.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Wiley Authors:Marta Miquel;
Carlos M.G. Aragon; Laura Font; Carles Sanchis-Segura;Marta Miquel
Marta Miquel in OpenAIREpmid: 12786983
AbstractLesions of the arcuate nucleus by monosodium glutamate, goldthioglucose and oestradiol valerate treatments are known to prevent the acute stimulating effect of ethanol in mice. On the basis of these results, the current study analysed whether a lesion of the arcuate nucleus by monosodium glutamate was able to block ethanol‐induced locomotor sensitization. To produce the arcuate nucleus lesions, pups were injected with saline or monosodium glutamate (4 mg/g body weight) subcutaneously on 5 alternate days, starting on postnatal day one. Sensitization treatments began 10 weeks after the initial lesions. Sensitization training consisted of six trials on alternate days, in which groups of mice were treated with ethanol (2 g/kg) or saline, and then tested in an open‐field for the induction of locomotor activity. The present study demonstrated that animals with monosodium glutamate‐induced lesions did not develop locomotor sensitization to ethanol. Different groups of mice were used to assay blood ethanol levels and to evaluate the effect of arcuate nucleus lesions on psychostimulant‐induced locomotor sensitization. Sensitization to cocaine or amphetamine was spared in monosodium glutamate‐pre‐treated animals, although the lesion of arcuate nucleus reduced the sensitivity of mice to cocaine. Our findings therefore suggest that the arcuate nucleus may be critical for the neuroadaptations that underlie the behavioural sensitization to ethanol, in contrast to those mediating psychostimulant‐induced sensitization.
European Journal of ... arrow_drop_down European Journal of NeuroscienceArticle . 2003 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1460-9568.2003.02646.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of NeuroscienceArticle . 2003 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1460-9568.2003.02646.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors:Marta Miquel;
Marta Miquel
Marta Miquel in OpenAIREMercè Correa;
Carlos M.G. Aragon;Mercè Correa
Mercè Correa in OpenAIREpmid: 10837853
Several reports have demonstrated that acute lead acetate administration enhances brain catalase activity in animals. Other reports have shown a role of brain catalase in ethanol-induced behaviors. In the present study we investigated the effect of acute lead acetate on brain catalase activity and on ethanol-induced locomotion, as well as whether mice treated with different doses of lead acetate, and therefore, with enhanced brain catalase activity, exhibit an increased ethanol-induced locomotor activity. Lead acetate or saline was injected IP in Swiss mice at doses of 50, 100, 150, or 200 mg/kg. At 7 days following this treatment, ethanol (0.0, 1.5, 2.0, 2.5, or 3.0 g/kg) was injected IP, and the animals were placed in the open-field chambers. Results indicated that the locomotor activity induced by ethanol was significantly increased in the groups treated with lead acetate. Maximum ethanol-induced locomotor activity increase was found in animals treated with 100 mg/kg of lead acetate and 2.5 g/kg of ethanol. Total brain catalase activity in lead-pretreated animals also showed a significant induction, which was maximum at 100 mg/kg of lead acetate treatment. No differences in blood ethanol levels were observed among treatment groups. The fact that brain catalase and ethanol-induced locomotor activity followed a similar pattern could suggest a relationship between both lead acetate effects and also a role for brain catalase in ethanol-induced behaviors.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(00)00204-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(00)00204-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV pmid: 16621047
Acetaldehyde, the first metabolite of ethanol, may mediate some ethanol-induced effects. Previous research in our laboratory has shown that D-penicillamine, an inactivation agent for acetaldehyde, is effective in decreasing locomotor stimulation and conditioned place preference induced by ethanol in mice. In the present study, the effects of D-penicillamine on the voluntary consumption of ethanol were assessed. Male rats were offered ethanol under restricted access, without food or water deprivation. Daily availability of ethanol was limited to a 15-min period in the home cages. When the response for 10% ethanol was stable, rats received an intraperitoneal (IP) injection of D-penicillamine (0, 25, 50 or 75 mg/kg) over a 5-day period, given 30 min before exposure to ethanol. In a second study we determined the specificity of D-penicillamine effects (50 mg/kg) on voluntary sucrose consumption (3%). Another study was conducted to evaluate whether IP D-penicillamine (50 mg/kg) alters taste reactivity responses. In the final experiment, rats were treated with intracerobroventricular (ICV) infusions of D-penicillamine (75 microg) for 5 days before drinking ethanol or sucrose. D-Penicillamine was found to reduce ethanol intake in a dose-dependent manner. Sucrose consumption was also affected by this thiol amino acid. We also demonstrated that D-penicillamine produced changes in the ingestive and flavor properties of sucrose and ethanol, measured by means of a taste reactivity test. When D-penicillamine was administered ICV, only voluntary ethanol consumption was modified. These findings indicate that the central inactivation of acetaldehyde blocks ethanol intake in rats, and suggest that acetaldehyde plays a key role in the motivational properties of ethanol.
Behavioural Brain Re... arrow_drop_down Behavioural Brain ResearchArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbr.2006.03.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Behavioural Brain Re... arrow_drop_down Behavioural Brain ResearchArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbr.2006.03.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors:Marta Miquel;
Marta Miquel
Marta Miquel in OpenAIREJ. Beltran;
J. Beltran
J. Beltran in OpenAIREOscar J. Pozo;
Oscar J. Pozo
Oscar J. Pozo in OpenAIREFélix Hernández;
+3 AuthorsFélix Hernández
Félix Hernández in OpenAIREMarta Miquel;
Marta Miquel
Marta Miquel in OpenAIREJ. Beltran;
J. Beltran
J. Beltran in OpenAIREOscar J. Pozo;
Oscar J. Pozo
Oscar J. Pozo in OpenAIREFélix Hernández;
Laura Font; E. Serrano; Carlos M.G. Aragon;Félix Hernández
Félix Hernández in OpenAIREdoi: 10.1002/rcm.2951
pmid: 17330215
AbstractAcetaldehyde, the main biological metabolite of ethanol, is nowadays considered to mediate some ethanol‐induced effects. Previous studies on alcohol effect attenuation have shown that D‐(–)‐penicillamine (3‐mercapto‐D‐valine), a thiol amino acid, acts as an effective agent for the inactivation of acetaldehyde. In the study reported here, laboratory rats were treated with ethanol and D‐(–)‐penicillamine at different doses looking for the interaction (in vivo) of D‐(–)‐penicillamine with metabolically formed acetaldehyde following a condensation reaction to form the stable adduct (4S,2RS)‐2,5,5‐trimethylthiazolidine‐4‐carboxylic acid (TMTCA). A novel and rapid procedure based on liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) was developed for quantification and reliable identification of TMTCA in different rat tissues, including plasma, liver and brain. Firstly, plasma was obtained from whole blood. Then, proteins were precipitated from plasma, brain and liver extracts with acetonitrile and the clarified extracts diluted 10‐fold. A 20 µL aliquot of the final extracts was then analyzed using an Atlantis C18 5 µm, 100 × 2 mm column which was connected to the electrospray source of a LC/triple quadrupole mass spectrometer. The analyte was detected in positive ion mode acquiring four MS/MS transitions in selected reaction monitoring (SRM) mode.The method has been validated and it has proved to be fast, reliable and sensitive. The accuracy and precision were evaluated by means of recovery experiments from plasma, liver and brain samples fortified at two concentration levels obtaining satisfactory recoveries in all cases: 95 and 105% in plasma (at 10 and 100 ng/mL, respectively), 79 and 89% in brain (100 and 1000 ng/g), 85 and 99% in liver (100 and 1000 ng/g). Precision, expressed as repeatability, was in all tissues analyzed lower than 17% at the two concentrations tested. The estimated detection limits were 1 ng/mL in plasma, 4 ng/g in brain and 5 ng/g in liver. The limit of quantitation objective (the lowest concentration that was validated with acceptable results) was set up at 10 ng/mL for plasma and 100 ng/g for brain and liver tissue.The reliable identification of the analyte was ensured by the acquisition of four transitions and by their ion abundance ratio measurement. Due to its excellent selectivity and sensitivity, the method developed in this work provides an excellent tool for the specific determination of this cyclic amino acid in biological samples. Copyright © 2007 John Wiley & Sons, Ltd.
Rapid Communications... arrow_drop_down Rapid Communications in Mass SpectrometryArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rcm.2951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Rapid Communications... arrow_drop_down Rapid Communications in Mass SpectrometryArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rcm.2951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC pmid: 16133139
Novelty associated with behavioral testing has been shown to enhance psychostimulant- and morphine-induced locomotor stimulation. Evidence has demonstrated that novelty increases dopamine (DA) activity, and habituation to a novel environment reduces such activation. However, it is not clear whether novelty modulates ethanol-induced behavioral stimulation and whether DA plays a role in this effect.The present work sought to demonstrate a role of habituation to test procedure as a factor that could modulate the involvement of DA in ethanol-induced locomotor stimulation.Non-habituated (NH) and habituated (H) Swiss mice pretreated with DA D1- (SCH23390; 0-0.045 mg/kg) or D2-receptor (sulpiride; 0-50 mg/kg) antagonists were tested for ethanol (0-2.5 g/kg)-induced locomotor stimulation. Experiments with amphetamine (0-4 mg/kg), morphine (0-5 mg/kg) and caffeine (0-15 mg/kg)were designed to compare their results to those obtained with ethanol. The effect of the non-selective opioid receptor antagonist naltrexone (0-1.5 mg/kg) was also tested on ethanol-induced locomotor stimulation.NH and H animals did not differ in their locomotor response to ethanol or caffeine; however, amphetamine- and morphine-induced stimulation was greater in NH than in H mice. SCH23390 only reduced ethanol-induced stimulation at doses that also reduced spontaneous activity in both NH and H mice. Sulpiride decreased ethanol-stimulated behavior only in the NH condition. Habituation did not modify the effect of sulpiride on amphetamine-, morphine- or caffeine-induced activation. Naltrexone (0-1.5 mg/kg) reduced ethanol-induced stimulation regardless of habituation.The present data suggest that the participation of DA D2-receptors in ethanol-induced behavioral stimulation requires the presence of novelty. Results also support the involvement of neurotransmitter systems other than DA (i.e., endogenous opioid system) as important substrates mediating ethanol-induced locomotor activation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-005-0115-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-005-0115-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu