Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcoholism Clinical and Experimental Research
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prevention of Ethanol‐Induced Behavioral Stimulation by d‐Penicillamine: A Sequestration Agent for Acetaldehyde

Authors: Marta Miquel; Laura Font; Carlos M.G. Aragon;

Prevention of Ethanol‐Induced Behavioral Stimulation by d‐Penicillamine: A Sequestration Agent for Acetaldehyde

Abstract

Background:d‐Penicillamine, a sulfhydryl amino acid derived from penicillin, is a highly selective agent for sequestering in vivo acetaldehyde, the first metabolic product of ethanol. A substantial amount of research supports the idea that brain acetaldehyde, produced by central ethanol metabolism, plays a key role in determining some of the behavioral effects of ethanol administration. This study addressed two questions. First, we tested if d‐penicillamine was able to modify the depressant effects of acetaldehyde on behavior. Second, we studied the effect of d‐penicillamine on ethanol‐induced behavioral stimulation.Methods:Mice were pretreated with 75.00 mg/kg of d‐penicillamine, and 30 min later, they received acetaldehyde at 0, 100, 200, or 300 mg/kg intraperitoneally. Different groups of animals were treated with 0.0, 37.5, 75, 150, or 300 mg/kg of d‐penicillamine simultaneously 30, 90, 150, or 210 min before the intraperitoneal administration of saline or 1.2, 1.8, 2.4, 3.0, or 3.6 g/kg of ethanol, respectively. The specificity of d‐penicillamine effects was addressed using two drugs: cocaine (4 mg/kg) and caffeine (15 mg/kg).Results:Our results revealed that behavioral depression caused by acetaldehyde (200 and 300 mg/kg) could be attenuated by d‐penicillamine treatment. In addition, d‐penicillamine was also effective in lowering behavioral locomotion induced by ethanol (1.8 and 2.4 g/kg), without altering spontaneous locomotor activity. This sulfhydryl amino acid specifically modified the effect of ethanol on locomotion because cocaine‐ or caffeine‐induced locomotion was unaffected. In addition, blood ethanol levels were not different between d‐penicillamine‐ and saline‐pretreated mice.Conclusions:Behavioral effects produced by acetaldehyde and ethanol are blocked when animals are treated with d‐penicillamine, an effective sequestration agent for acetaldehyde. These results suggest that some of the psychopharmacological effects, classically attributed to ethanol, could be mediated by its first metabolite, acetaldehyde.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Ethanol, Penicillamine, Acetaldehyde, Motor Activity, Mice, Depression, Chemical, Exploratory Behavior, Animals, Injections, Intraperitoneal, Locomotion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Average
Top 10%
Top 10%
Related to Research communities
Energy Research