- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Kenya, France, France, France, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthSankaran, Mahesh; P. Hanan, Niall; J. Scholes, Robert; Ratnam, Jayashree; J. Augustine, David; S. Cade, Brian; Gignoux, Jacques; I. Higgins, Steven; Le Roux, Xavier; Ludwig, Fulco; Ardo, Jonas; Banyikwa, Feetham; Bronn, Andries; Bucini, Gabriela; K. Caylor, Kelly; B. Coughenour, Michael; Diouf, Alioune; Ekaya, Wellington; J. Feral, Christie; C. February, Edmund; G. H. Frost, Peter; Hiernaux, Pierre; Hrabar, Halszka; L. Metzger, Kristine; H. T. Prins, Herbert; Ringrose, Susan; Sea, William; Tews, Jörg; Worden, Jeff; Zambatis, Nick;Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than approximately 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of approximately 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation may considerably affect their distribution and dynamics.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,545 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Beukes Enslin; William J. Bond; Douglas I. W. Euston-Brown; A.L.F. Potgieter; Andries Bronn; Sean O'Regan; Louise Rademan; Richard Sowry; Edmund C. February; Navashni Govender; W.S.W. Trollope; Lynn Trollope; Steven I. Higgins; Simon Scheiter;doi: 10.1890/06-1664
pmid: 17536398
The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu380 citations 380 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Louise Swemmer; Edmund C. February; Steven I. Higgins; William J. Bond;doi: 10.1890/12-0540.1
pmid: 23858655
In this study, we explored how rainfall manipulation influenced competitive interactions between grasses and juvenile trees (small nonreproductive trees capable of resprouting) in savanna. To do this, we manipulated rainfall amount in the field using an incomplete factorial experiment that determined the effects of rainfall reduction, no manipulation, rainfall addition, and competition between grasses and trees on grass and tree growth. As response variables, we focused on several measures of tree growth and Disc Pasture Meter settling height as an estimate of grass aboveground biomass. We conducted the study over four years, at two sites in the Kruger National Park, South Africa. Our results show that rainfall manipulation did not have substantial effects on any of the measures of tree growth we considered. However, trees at plots where grasses had been removed grew on average 15 cm more in height and 1.3–1.7 times more in basal area per year than those in plots with grasses. Grass biomass was not influenced by the presence of trees but was significantly and positively influenced by rainfall addition. These findings were not fundamentally influenced by soil type or by prevailing precipitation, suggesting applicability of our results to a wide range of savannas. Our results suggest that, in savannas, increasing rainfall serves to increase the competitive pressure exerted by grasses on trees. The implication is that recruitment into the adult tree stage from the juvenile stage is most likely in drought years when there is little competition from grass for resources and grass fuel loads are low.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/12-0540.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/12-0540.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:DFGDFGAuthors: Schmidt, Patrick; Charrié-Duhaut, Armelle; February, Edmund; Wadley, Lyn;pmid: 39146927
The foragers of the southern African Middle Stone Age were among the first humans to adapt their environment and its resources to their needs. They heat-treated stone to alter its mechanical properties, transformed yellow colorants into red pigments and produced moldable adhesive substances from plants. Until now, only Podocarpus conifers have been identified as the botanical origin of Middle Stone Age adhesives. This is curious as these conifers do not produce sticky exudations that could be recognized as potential adhesives. To obtain an adhesive, tar must be made with a technical process based on fire. However, the nature of these technical processes has remained unknown, hampering our understanding of the meaning of this adhesive technology for the cultural evolution of early Homo sapiens. Here, we present the first evidence of a technique used for tar making in the Middle Stone Age. We created an experimental reference collection containing naturally available adhesives along manufactured tars from plants available in the Middle Stone Age and compared these to artifacts using gas chromatography-mass spectrometry and infrared spectroscopy. We found that, in the Howiesons Poort at Sibhudu Cave, tar was made by condensation, an efficient above-ground process. Even more surprisingly, the condensation method was not restricted to Podocarpus. The inhabitants of Sibhudu also produced tar from the leaves of other plants. These tars were then used, either without further transformation or were processed into ochre-based compound adhesives, suggesting that people needed different moldable substances with distinct mechanical properties. This has important implications for our understanding of Middle Stone Age H. sapiens, portraying them as skilled engineers who used and transformed their resources in a knowledgeable way.
Journal of Human Evo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhevol.2024.103578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Human Evo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhevol.2024.103578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Andrew Kulmatiski; Richard J. T. Verweij; Karen H. Beard; Edmund C. February;pmid: 20561202
• As described in the two-layer hypothesis, woody plants are often assumed to use deep soils to avoid competition with grasses. Yet the direct measurements of root activity needed to test this hypothesis are rare. • Here, we injected deuterated water into four soil depths, at four times of year, to measure the vertical and horizontal location of water uptake by trees and grasses in a mesic savanna in Kruger National Park, South Africa. • Trees absorbed 24, 59, 14 and 4% of tracer from the 5, 20, 50, and 120 cm depths, respectively, while grasses absorbed 61, 29, 9 and 0.3% of tracer from the same depths. Only 44% of root mass was in the top 20 cm. Trees absorbed tracer under and beyond their crowns, while 98% of tracer absorbed by grasses came from directly under the stem. • Trees and grasses partitioned soil resources (20 vs 5 cm), but this partitioning did not reflect, as suggested by the two-layer hypothesis, the ability of trees to access deep soil water that was unavailable to grasses. Because root mass was a poor indicator of root activity, our results highlight the importance of precise root activity measurements.
New Phytologist arrow_drop_down New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Kenya, France, France, France, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthSankaran, Mahesh; P. Hanan, Niall; J. Scholes, Robert; Ratnam, Jayashree; J. Augustine, David; S. Cade, Brian; Gignoux, Jacques; I. Higgins, Steven; Le Roux, Xavier; Ludwig, Fulco; Ardo, Jonas; Banyikwa, Feetham; Bronn, Andries; Bucini, Gabriela; K. Caylor, Kelly; B. Coughenour, Michael; Diouf, Alioune; Ekaya, Wellington; J. Feral, Christie; C. February, Edmund; G. H. Frost, Peter; Hiernaux, Pierre; Hrabar, Halszka; L. Metzger, Kristine; H. T. Prins, Herbert; Ringrose, Susan; Sea, William; Tews, Jörg; Worden, Jeff; Zambatis, Nick;Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than approximately 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of approximately 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation may considerably affect their distribution and dynamics.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,545 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Beukes Enslin; William J. Bond; Douglas I. W. Euston-Brown; A.L.F. Potgieter; Andries Bronn; Sean O'Regan; Louise Rademan; Richard Sowry; Edmund C. February; Navashni Govender; W.S.W. Trollope; Lynn Trollope; Steven I. Higgins; Simon Scheiter;doi: 10.1890/06-1664
pmid: 17536398
The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu380 citations 380 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Louise Swemmer; Edmund C. February; Steven I. Higgins; William J. Bond;doi: 10.1890/12-0540.1
pmid: 23858655
In this study, we explored how rainfall manipulation influenced competitive interactions between grasses and juvenile trees (small nonreproductive trees capable of resprouting) in savanna. To do this, we manipulated rainfall amount in the field using an incomplete factorial experiment that determined the effects of rainfall reduction, no manipulation, rainfall addition, and competition between grasses and trees on grass and tree growth. As response variables, we focused on several measures of tree growth and Disc Pasture Meter settling height as an estimate of grass aboveground biomass. We conducted the study over four years, at two sites in the Kruger National Park, South Africa. Our results show that rainfall manipulation did not have substantial effects on any of the measures of tree growth we considered. However, trees at plots where grasses had been removed grew on average 15 cm more in height and 1.3–1.7 times more in basal area per year than those in plots with grasses. Grass biomass was not influenced by the presence of trees but was significantly and positively influenced by rainfall addition. These findings were not fundamentally influenced by soil type or by prevailing precipitation, suggesting applicability of our results to a wide range of savannas. Our results suggest that, in savannas, increasing rainfall serves to increase the competitive pressure exerted by grasses on trees. The implication is that recruitment into the adult tree stage from the juvenile stage is most likely in drought years when there is little competition from grass for resources and grass fuel loads are low.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/12-0540.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/12-0540.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:DFGDFGAuthors: Schmidt, Patrick; Charrié-Duhaut, Armelle; February, Edmund; Wadley, Lyn;pmid: 39146927
The foragers of the southern African Middle Stone Age were among the first humans to adapt their environment and its resources to their needs. They heat-treated stone to alter its mechanical properties, transformed yellow colorants into red pigments and produced moldable adhesive substances from plants. Until now, only Podocarpus conifers have been identified as the botanical origin of Middle Stone Age adhesives. This is curious as these conifers do not produce sticky exudations that could be recognized as potential adhesives. To obtain an adhesive, tar must be made with a technical process based on fire. However, the nature of these technical processes has remained unknown, hampering our understanding of the meaning of this adhesive technology for the cultural evolution of early Homo sapiens. Here, we present the first evidence of a technique used for tar making in the Middle Stone Age. We created an experimental reference collection containing naturally available adhesives along manufactured tars from plants available in the Middle Stone Age and compared these to artifacts using gas chromatography-mass spectrometry and infrared spectroscopy. We found that, in the Howiesons Poort at Sibhudu Cave, tar was made by condensation, an efficient above-ground process. Even more surprisingly, the condensation method was not restricted to Podocarpus. The inhabitants of Sibhudu also produced tar from the leaves of other plants. These tars were then used, either without further transformation or were processed into ochre-based compound adhesives, suggesting that people needed different moldable substances with distinct mechanical properties. This has important implications for our understanding of Middle Stone Age H. sapiens, portraying them as skilled engineers who used and transformed their resources in a knowledgeable way.
Journal of Human Evo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhevol.2024.103578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Human Evo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhevol.2024.103578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Andrew Kulmatiski; Richard J. T. Verweij; Karen H. Beard; Edmund C. February;pmid: 20561202
• As described in the two-layer hypothesis, woody plants are often assumed to use deep soils to avoid competition with grasses. Yet the direct measurements of root activity needed to test this hypothesis are rare. • Here, we injected deuterated water into four soil depths, at four times of year, to measure the vertical and horizontal location of water uptake by trees and grasses in a mesic savanna in Kruger National Park, South Africa. • Trees absorbed 24, 59, 14 and 4% of tracer from the 5, 20, 50, and 120 cm depths, respectively, while grasses absorbed 61, 29, 9 and 0.3% of tracer from the same depths. Only 44% of root mass was in the top 20 cm. Trees absorbed tracer under and beyond their crowns, while 98% of tracer absorbed by grasses came from directly under the stem. • Trees and grasses partitioned soil resources (20 vs 5 cm), but this partitioning did not reflect, as suggested by the two-layer hypothesis, the ability of trees to access deep soil water that was unavailable to grasses. Because root mass was a poor indicator of root activity, our results highlight the importance of precise root activity measurements.
New Phytologist arrow_drop_down New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu