- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV K. Xerxes Steirer; K. Xerxes Steirer; Benjamin L. Rupert; Dana C. Olson; Nikos Kopidakis; Matthew O. Reese; David S. Ginley; Reuben T. Collins;Abstract Recent improvements of organic photovoltaic power conversion efficiencies have motivated development of scalable processing techniques. We compare chlorobenzene and p-xylene, as solvents with similar bulk properties, in a case study of ultrasonic spray depositions of bulk heterojunction layers in photovoltaic devices. Structure and morphology of spray-deposited films are investigated via small-angle X-ray diffraction and optical microscopy. Unique phases are observed in bulk heterostructure films sprayed from p-xylene. Films sprayed from chlorobenzene resulted in higher device efficiencies than p-xylene due to large differences in film morphologies. Carrier loss mechanisms are also investigated. Post-production annealing increases power conversion efficiency to 3.2% when chlorobenzene is used.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.10.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu163 citations 163 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.10.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Dhananjay Panchagade; Arrelaine A. Dameron; Michael D. Kempe; Matthew O. Reese;doi: 10.1002/pip.2465
AbstractPhotovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25 years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge‐seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge‐seal as a function of aging. Copyright © 2014 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Arrelaine A. Dameron; Matthew O. Reese; Michael D. Kempe;doi: 10.1002/pip.2374
ABSTRACTMany thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge‐seal around the perimeter to prevent water vapor ingress. These edge‐seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge‐seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge‐seal and encapsulant materials in a manner that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge‐seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry. Copyright © 2013 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Nikos Kopidakis; Sean E. Shaheen; Anthony J. Morfa; Garry Rumbles; Matthew O. Reese; David S. Ginley; Matthew S. White;Abstract We report on studies of device degradation in organic photovoltaic devices based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Since delamination, oxidation, and chemical interactions at the metal electrode/organic interface have long been posited as degradation pathways in organic electronic devices, we first investigated the stability of a variety of electrodes for devices stored in an inert, dark environment. Second, a set of experiments was designed to separate the effects at the metal/organic interface from the degradation of the active layer or the hole extraction interface. To do this, Ca/Al electrodes were deposited to complete half of a substrate's devices, and samples were left both under constant illumination and 10% illumination (10% duty cycle of 1 sun illumination) in a glovebox environment. After more than 200 h of measurement, additional electrodes were deposited and device performance of each set was compared. Third, to assess the degree of degradation caused by photo-induced processes, device stability in an inert atmosphere under constant illumination, and 10% illumination conditions was also investigated. Last, various degradation mitigation strategies in air under constant illumination were explored. The results showed that the active layer itself is not inherently unstable on the timescales studied here. Choosing the appropriate electrode (Ca/Al) reduced interfacial degradation, storing the active layer in an inert, dark environment did not cause significant degradation, and storing the active layer under constant illumination caused only a limited reduction in performance. Our results indicate that the metal/organic interface can be a significant source of degradation in the devices, and we discuss approaches that could reduce this instability.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu217 citations 217 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Ajaya K. Sigdel; Joseph J. Berry; D. S. Ginley; Sean E. Shaheen; Matthew O. Reese;Abstract A simple, controlled-atmosphere chamber that allows optical and electrical device characterization of samples is described. It can be used as a reusable encapsulation method or as a controlled atmospheric chamber for a variety of experiments, for example, lifetime testing of organic optoelectronic devices. In this paper, designs are included for this system as well as a description on how to scale it if desired. Chambers based on these designs and their elements were characterized using helium leaking checking as well as monitored for moisture ingress with an electrical calcium test. Finally, chambers were used to encapsulate organic photovoltaic devices to demonstrate the effective stable environment provided by this platform over the course of weeks.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Sean P. Dunfield; Amy E. Louks; Jay Waxse; Robert Tirawat; Steve Robbins; Joseph J. Berry; Matthew O. Reese;doi: 10.1039/d3se00327b
Dunfield et al. discuss various options for satisfying the ISOS light stability series (ISOS-L-#) of tests, a homebuilt testing apparatus and software suite for such tests, and a case study.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00327b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00327b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Michael A. Scarpulla; Brian McCandless; Adam B. Phillips; Yanfa Yan; Michael J. Heben; Colin Wolden; Gang Xiong; Wyatt K. Metzger; Dan Mao; Dmitry Krasikov; Igor Sankin; Sachit Grover; Amit Munshi; Walajabad Sampath; James R. Sites; Alexandra Bothwell; David Albin; Matthew O. Reese; Alessandro Romeo; Marco Nardone; Robert Klie; J. Michael Walls; Thomas Fiducia; Ali Abbas; Sarah M. Hayes;handle: 11562/1111769
Cadmium telluride (CdTe)-based cells have emerged as the leading commercialized thin film photovoltaic technology and has intrinsically better temperature co-efficients, energy yield, and degradation rates than Si technologies. More than 30 GW peak (GWp) of CdTe-based modules are installed worldwide, multiple com-panies are in production, modules are shipping at up to 18.6% efficiency, and lab cell efficiency is above 22%. We review developments in the science and technology that have occurred over approximately the past decade. These achievements were enabled by manufacturing innovations and scaling module production, as well as maximizing photocurrent through window layer optimization and alloyed CdSexTe1-x (CST) absorbers. Improved chlorine passivation processes, film microstructure, and serendipitous Se defect passivation significantly increased minority carrier lifetime. Efficiencies >22% have been realized for both Cu and As doped CST-based cells. The path to further efficiency gains hinges primarily on increasing open circuit voltage (Voc) and fill factor (FF) through innovations in materials, fabrication methods, and device stacks. Replacing the longstanding Cu doping with As doping is resulting in better module stability and is being translated to large-scale production. To realize 25% efficiency and >1 V Voc, research and development is needed to increase the minority carrier lifetime beyond 100 ns, reduce grain boundary and interface recombination, and tailor band diagrams at the front and back interfaces. Many of these goals have been realized separately however combining them together using scalable manufacturing approaches has been elusive to date. We review these achievements and outstanding opportunities for this remarkable photovoltaic technology.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Data sources: IRIS - Università degli Studi di VeronaSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 161 citations 161 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Data sources: IRIS - Università degli Studi di VeronaSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Eric Colegrove; Kelvin G. Lynn; Ana Kanevce; Wyatt K. Metzger; Helio R. Moutinho; Darius Kuciauskas; Teresa M. Barnes; Jeffrey A. Aguiar; James M. Burst; Joel N. Duenow; David S. Albin; Chun-Sheng Jiang; Matthew O. Reese; Santosh K. Swain; Mowafak Al-Jassim; Tursun Ablekim;Advancing CdTe solar cell efficiency requires improving the open-circuit voltage $\rm{(V_{{\rm{OC}}})}$ above 900 mV. This requires long carrier lifetime, high hole density, and high-quality interfaces, where the interface recombination velocity is less than about 104 cm/s. Using CdTe single crystals as a model system, we report on CdTe/CdS electrical and structural interface properties in devices that produce open-circuit voltage exceeding 950 mV.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2598274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2598274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Chun-Sheng Jiang; Eric Colegrove; Steven P. Harvey; Joel N. Duenow; Ed Sartor; Matthew O. Reese;Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Brian Good; Eric Colegrove; Matthew O. Reese;Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV K. Xerxes Steirer; K. Xerxes Steirer; Benjamin L. Rupert; Dana C. Olson; Nikos Kopidakis; Matthew O. Reese; David S. Ginley; Reuben T. Collins;Abstract Recent improvements of organic photovoltaic power conversion efficiencies have motivated development of scalable processing techniques. We compare chlorobenzene and p-xylene, as solvents with similar bulk properties, in a case study of ultrasonic spray depositions of bulk heterojunction layers in photovoltaic devices. Structure and morphology of spray-deposited films are investigated via small-angle X-ray diffraction and optical microscopy. Unique phases are observed in bulk heterostructure films sprayed from p-xylene. Films sprayed from chlorobenzene resulted in higher device efficiencies than p-xylene due to large differences in film morphologies. Carrier loss mechanisms are also investigated. Post-production annealing increases power conversion efficiency to 3.2% when chlorobenzene is used.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.10.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu163 citations 163 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.10.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Dhananjay Panchagade; Arrelaine A. Dameron; Michael D. Kempe; Matthew O. Reese;doi: 10.1002/pip.2465
AbstractPhotovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25 years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge‐seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge‐seal as a function of aging. Copyright © 2014 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Arrelaine A. Dameron; Matthew O. Reese; Michael D. Kempe;doi: 10.1002/pip.2374
ABSTRACTMany thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge‐seal around the perimeter to prevent water vapor ingress. These edge‐seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge‐seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge‐seal and encapsulant materials in a manner that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge‐seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry. Copyright © 2013 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Nikos Kopidakis; Sean E. Shaheen; Anthony J. Morfa; Garry Rumbles; Matthew O. Reese; David S. Ginley; Matthew S. White;Abstract We report on studies of device degradation in organic photovoltaic devices based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Since delamination, oxidation, and chemical interactions at the metal electrode/organic interface have long been posited as degradation pathways in organic electronic devices, we first investigated the stability of a variety of electrodes for devices stored in an inert, dark environment. Second, a set of experiments was designed to separate the effects at the metal/organic interface from the degradation of the active layer or the hole extraction interface. To do this, Ca/Al electrodes were deposited to complete half of a substrate's devices, and samples were left both under constant illumination and 10% illumination (10% duty cycle of 1 sun illumination) in a glovebox environment. After more than 200 h of measurement, additional electrodes were deposited and device performance of each set was compared. Third, to assess the degree of degradation caused by photo-induced processes, device stability in an inert atmosphere under constant illumination, and 10% illumination conditions was also investigated. Last, various degradation mitigation strategies in air under constant illumination were explored. The results showed that the active layer itself is not inherently unstable on the timescales studied here. Choosing the appropriate electrode (Ca/Al) reduced interfacial degradation, storing the active layer in an inert, dark environment did not cause significant degradation, and storing the active layer under constant illumination caused only a limited reduction in performance. Our results indicate that the metal/organic interface can be a significant source of degradation in the devices, and we discuss approaches that could reduce this instability.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu217 citations 217 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Ajaya K. Sigdel; Joseph J. Berry; D. S. Ginley; Sean E. Shaheen; Matthew O. Reese;Abstract A simple, controlled-atmosphere chamber that allows optical and electrical device characterization of samples is described. It can be used as a reusable encapsulation method or as a controlled atmospheric chamber for a variety of experiments, for example, lifetime testing of organic optoelectronic devices. In this paper, designs are included for this system as well as a description on how to scale it if desired. Chambers based on these designs and their elements were characterized using helium leaking checking as well as monitored for moisture ingress with an electrical calcium test. Finally, chambers were used to encapsulate organic photovoltaic devices to demonstrate the effective stable environment provided by this platform over the course of weeks.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Sean P. Dunfield; Amy E. Louks; Jay Waxse; Robert Tirawat; Steve Robbins; Joseph J. Berry; Matthew O. Reese;doi: 10.1039/d3se00327b
Dunfield et al. discuss various options for satisfying the ISOS light stability series (ISOS-L-#) of tests, a homebuilt testing apparatus and software suite for such tests, and a case study.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00327b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00327b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Michael A. Scarpulla; Brian McCandless; Adam B. Phillips; Yanfa Yan; Michael J. Heben; Colin Wolden; Gang Xiong; Wyatt K. Metzger; Dan Mao; Dmitry Krasikov; Igor Sankin; Sachit Grover; Amit Munshi; Walajabad Sampath; James R. Sites; Alexandra Bothwell; David Albin; Matthew O. Reese; Alessandro Romeo; Marco Nardone; Robert Klie; J. Michael Walls; Thomas Fiducia; Ali Abbas; Sarah M. Hayes;handle: 11562/1111769
Cadmium telluride (CdTe)-based cells have emerged as the leading commercialized thin film photovoltaic technology and has intrinsically better temperature co-efficients, energy yield, and degradation rates than Si technologies. More than 30 GW peak (GWp) of CdTe-based modules are installed worldwide, multiple com-panies are in production, modules are shipping at up to 18.6% efficiency, and lab cell efficiency is above 22%. We review developments in the science and technology that have occurred over approximately the past decade. These achievements were enabled by manufacturing innovations and scaling module production, as well as maximizing photocurrent through window layer optimization and alloyed CdSexTe1-x (CST) absorbers. Improved chlorine passivation processes, film microstructure, and serendipitous Se defect passivation significantly increased minority carrier lifetime. Efficiencies >22% have been realized for both Cu and As doped CST-based cells. The path to further efficiency gains hinges primarily on increasing open circuit voltage (Voc) and fill factor (FF) through innovations in materials, fabrication methods, and device stacks. Replacing the longstanding Cu doping with As doping is resulting in better module stability and is being translated to large-scale production. To realize 25% efficiency and >1 V Voc, research and development is needed to increase the minority carrier lifetime beyond 100 ns, reduce grain boundary and interface recombination, and tailor band diagrams at the front and back interfaces. Many of these goals have been realized separately however combining them together using scalable manufacturing approaches has been elusive to date. We review these achievements and outstanding opportunities for this remarkable photovoltaic technology.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Data sources: IRIS - Università degli Studi di VeronaSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 161 citations 161 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Data sources: IRIS - Università degli Studi di VeronaSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Eric Colegrove; Kelvin G. Lynn; Ana Kanevce; Wyatt K. Metzger; Helio R. Moutinho; Darius Kuciauskas; Teresa M. Barnes; Jeffrey A. Aguiar; James M. Burst; Joel N. Duenow; David S. Albin; Chun-Sheng Jiang; Matthew O. Reese; Santosh K. Swain; Mowafak Al-Jassim; Tursun Ablekim;Advancing CdTe solar cell efficiency requires improving the open-circuit voltage $\rm{(V_{{\rm{OC}}})}$ above 900 mV. This requires long carrier lifetime, high hole density, and high-quality interfaces, where the interface recombination velocity is less than about 104 cm/s. Using CdTe single crystals as a model system, we report on CdTe/CdS electrical and structural interface properties in devices that produce open-circuit voltage exceeding 950 mV.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2598274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2598274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Chun-Sheng Jiang; Eric Colegrove; Steven P. Harvey; Joel N. Duenow; Ed Sartor; Matthew O. Reese;Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Brian Good; Eric Colegrove; Matthew O. Reese;Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu