- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors:Mariluz Betancur;
Mariluz Betancur
Mariluz Betancur in OpenAIREJuan Daniel Martínez;
Juan Daniel Martínez
Juan Daniel Martínez in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREpmid: 19398156
The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2009.02.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2009.02.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors:Mariluz Betancur;
Mariluz Betancur
Mariluz Betancur in OpenAIREJuan Daniel Martínez;
Juan Daniel Martínez
Juan Daniel Martínez in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREpmid: 19398156
The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2009.02.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2009.02.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Authors:Martínez Ángel, Juan Daniel;
Martínez Ángel, Juan Daniel
Martínez Ángel, Juan Daniel in OpenAIREMurillo Villuendas, Ramón;
García Martínez, Tomás;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREVeses Roda, Alberto;
Veses Roda, Alberto
Veses Roda, Alberto in OpenAIREThis work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.07.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 110 citations 110 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 40 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.07.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Authors:Martínez Ángel, Juan Daniel;
Martínez Ángel, Juan Daniel
Martínez Ángel, Juan Daniel in OpenAIREMurillo Villuendas, Ramón;
García Martínez, Tomás;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREVeses Roda, Alberto;
Veses Roda, Alberto
Veses Roda, Alberto in OpenAIREThis work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.07.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 110 citations 110 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 40 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.07.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors:Isabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREJ.R. Fernández;
J.R. Fernández
J.R. Fernández in OpenAIREJuan Carlos Abanades;
+1 AuthorsJuan Carlos Abanades
Juan Carlos Abanades in OpenAIREIsabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREJ.R. Fernández;
J.R. Fernández
J.R. Fernández in OpenAIREJuan Carlos Abanades;
Juan Carlos Abanades
Juan Carlos Abanades in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREdoi: 10.1002/aic.14054
The integration in a natural gas combined cycle (NGCC) of a novel process for H2 production using a chemical Ca–Cu loop was proposed. This process is based on the sorption‐enhanced reforming process for H2 production from natural gas with a CaO/CaCO3 chemical loop, but including a second Cu/CuO loop to regenerate the Ca‐sorbent. An integration of this system into a NGCC was proposed and a full process simulation exercise of different cases was carried out. Optimizing the operating conditions in the Ca–Cu looping process, 8.1% points of efficiency penalty with respect to a state‐of‐the‐art NGCC are obtained with a CO2 capture efficiency of 90%. It was demonstrated that the new process can yield power generation efficiencies as high as any other emerging and commercial concepts for power generation from NGCC with CO2 capture, but maintaining competing advantages of process simplification and compact pressurized reactor design inherent to the Ca–Cu looping system. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2780–2794, 2013
AIChE Journal arrow_drop_down AIChE JournalArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.14054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AIChE Journal arrow_drop_down AIChE JournalArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.14054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors:Isabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREJ.R. Fernández;
J.R. Fernández
J.R. Fernández in OpenAIREJuan Carlos Abanades;
+1 AuthorsJuan Carlos Abanades
Juan Carlos Abanades in OpenAIREIsabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREJ.R. Fernández;
J.R. Fernández
J.R. Fernández in OpenAIREJuan Carlos Abanades;
Juan Carlos Abanades
Juan Carlos Abanades in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREdoi: 10.1002/aic.14054
The integration in a natural gas combined cycle (NGCC) of a novel process for H2 production using a chemical Ca–Cu loop was proposed. This process is based on the sorption‐enhanced reforming process for H2 production from natural gas with a CaO/CaCO3 chemical loop, but including a second Cu/CuO loop to regenerate the Ca‐sorbent. An integration of this system into a NGCC was proposed and a full process simulation exercise of different cases was carried out. Optimizing the operating conditions in the Ca–Cu looping process, 8.1% points of efficiency penalty with respect to a state‐of‐the‐art NGCC are obtained with a CO2 capture efficiency of 90%. It was demonstrated that the new process can yield power generation efficiencies as high as any other emerging and commercial concepts for power generation from NGCC with CO2 capture, but maintaining competing advantages of process simplification and compact pressurized reactor design inherent to the Ca–Cu looping system. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2780–2794, 2013
AIChE Journal arrow_drop_down AIChE JournalArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.14054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AIChE Journal arrow_drop_down AIChE JournalArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.14054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors:Navarro López, María Victoria;
Aranda, Asunción; García Martínez, Tomás;Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
+1 AuthorsMurillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIRENavarro López, María Victoria;
Aranda, Asunción; García Martínez, Tomás;Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
Mastral Lamarca, Ana María;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREhandle: 10261/254609
In this study, an investigation was carried out into the thermal behaviour of coal, petcoke and their blend as a generic feedstock in combustion and IGCC plants for energy production. The samples were pyrolysed in a TG analyzer in nitrogen atmosphere (constant flow of 0.0335 m/s) at several heating rates with temperatures ranging from 300 to 1223 K. The distributed activation energy model was applied to study the effects of heating rates on the reactions of single solids. The results obtained were used in the calculation of curves mass loss vs. temperature at more realistic heating rates. The algorithm used to obtain the distribution of reactivities for single solids was successfully implemented to allow the prediction of blends performance. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2008.01.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 98 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2008.01.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors:Navarro López, María Victoria;
Aranda, Asunción; García Martínez, Tomás;Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
+1 AuthorsMurillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIRENavarro López, María Victoria;
Aranda, Asunción; García Martínez, Tomás;Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
Mastral Lamarca, Ana María;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREhandle: 10261/254609
In this study, an investigation was carried out into the thermal behaviour of coal, petcoke and their blend as a generic feedstock in combustion and IGCC plants for energy production. The samples were pyrolysed in a TG analyzer in nitrogen atmosphere (constant flow of 0.0335 m/s) at several heating rates with temperatures ranging from 300 to 1223 K. The distributed activation energy model was applied to study the effects of heating rates on the reactions of single solids. The results obtained were used in the calculation of curves mass loss vs. temperature at more realistic heating rates. The algorithm used to obtain the distribution of reactivities for single solids was successfully implemented to allow the prediction of blends performance. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2008.01.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 98 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2008.01.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 SpainPublisher:Wiley Funded by:EC | CAOLINGEC| CAOLINGAuthors:Martínez, I.;
Martínez, I.
Martínez, I. in OpenAIREMurillo Villuendas, Ramón;
Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREGrasa Adiego, Gemma;
Grasa Adiego, Gemma
Grasa Adiego, Gemma in OpenAIREAbanades García, Juan Carlos;
Abanades García, Juan Carlos
Abanades García, Juan Carlos in OpenAIREdoi: 10.1002/aic.12461
handle: 10261/45521
AbstractThis work analyses a Ca looping system that uses CaO as regenerable sorbent to capture CO2 from the flue gases generated in power plants. The CO2 is captured by CaO in a CFB carbonator while coal oxycombustion provides the energy required to regenerate the sorbent. Part of the energy introduced into the calciner can be transferred to a new supercritical steam cycle to generate additional power. Several case studies have been integrated with this steam cycle. Efficiency penalties, mainly associated with the energy consumption of the ASU, CO2 compressor and auxiliaries, can be as low as 7.5% p. of net efficiency when working with low‐CaCO3 make‐up flows and integrating the Ca looping with a cement plant that makes use of the spent sorbent. The penalties increase to 8.3% p. when this possibility is not available. Operation conditions aiming at minimum calciner size result in slightly higher‐efficiency penalties. © 2010 American Institute of Chemical Engineers AIChE J, 2011
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/aic....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 44visibility views 44 download downloads 163 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/aic....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 SpainPublisher:Wiley Funded by:EC | CAOLINGEC| CAOLINGAuthors:Martínez, I.;
Martínez, I.
Martínez, I. in OpenAIREMurillo Villuendas, Ramón;
Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREGrasa Adiego, Gemma;
Grasa Adiego, Gemma
Grasa Adiego, Gemma in OpenAIREAbanades García, Juan Carlos;
Abanades García, Juan Carlos
Abanades García, Juan Carlos in OpenAIREdoi: 10.1002/aic.12461
handle: 10261/45521
AbstractThis work analyses a Ca looping system that uses CaO as regenerable sorbent to capture CO2 from the flue gases generated in power plants. The CO2 is captured by CaO in a CFB carbonator while coal oxycombustion provides the energy required to regenerate the sorbent. Part of the energy introduced into the calciner can be transferred to a new supercritical steam cycle to generate additional power. Several case studies have been integrated with this steam cycle. Efficiency penalties, mainly associated with the energy consumption of the ASU, CO2 compressor and auxiliaries, can be as low as 7.5% p. of net efficiency when working with low‐CaCO3 make‐up flows and integrating the Ca looping with a cement plant that makes use of the spent sorbent. The penalties increase to 8.3% p. when this possibility is not available. Operation conditions aiming at minimum calciner size result in slightly higher‐efficiency penalties. © 2010 American Institute of Chemical Engineers AIChE J, 2011
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/aic....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 44visibility views 44 download downloads 163 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/aic....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors:Alberto Veses;
Alberto Veses
Alberto Veses in OpenAIREOlga Sanahuja-Parejo;
Olga Sanahuja-Parejo
Olga Sanahuja-Parejo in OpenAIREMaría Soledad Callén;
María Soledad Callén
María Soledad Callén in OpenAIRERamón Murillo;
+1 AuthorsRamón Murillo
Ramón Murillo in OpenAIREAlberto Veses;
Alberto Veses
Alberto Veses in OpenAIREOlga Sanahuja-Parejo;
Olga Sanahuja-Parejo
Olga Sanahuja-Parejo in OpenAIREMaría Soledad Callén;
María Soledad Callén
María Soledad Callén in OpenAIRERamón Murillo;
Tomás García;Ramón Murillo
Ramón Murillo in OpenAIREPyrolysis combined to either thermal cracking or catalytic cracking of municipal solid waste was performed in a laboratory-scale facility consisting of a fixed-bed reactor followed by a tubular cracking reactor. The results showed great potential for the production of syngas. The incorporation of inexpensive and widely available dolomite in the cracking reactor (with a constant feedstock to calcined dolomite ratio of 5:1) favoured the catalytic cracking of the primary pyrolysis products towards H2 and CO in a temperature range of 800-900 °C. More particularly, it was possible at 900 °C to achieve a syngas consisting of more than 80 vol% CO and H2 with a heating value of 16 MJ/Nm3. Additionally, a homogeneous solid fuel was obtained as a solid residue, which can be used to provide additional energy to support the process or as a refuse-derived fuel. Thus, the great potential of this process was demonstrated for turning municipal solid waste into a valuable gas fraction that can be used directly as a fuel or as a source of different value-added products.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/119720Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2019.10.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 47visibility views 47 download downloads 218 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/119720Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2019.10.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors:Alberto Veses;
Alberto Veses
Alberto Veses in OpenAIREOlga Sanahuja-Parejo;
Olga Sanahuja-Parejo
Olga Sanahuja-Parejo in OpenAIREMaría Soledad Callén;
María Soledad Callén
María Soledad Callén in OpenAIRERamón Murillo;
+1 AuthorsRamón Murillo
Ramón Murillo in OpenAIREAlberto Veses;
Alberto Veses
Alberto Veses in OpenAIREOlga Sanahuja-Parejo;
Olga Sanahuja-Parejo
Olga Sanahuja-Parejo in OpenAIREMaría Soledad Callén;
María Soledad Callén
María Soledad Callén in OpenAIRERamón Murillo;
Tomás García;Ramón Murillo
Ramón Murillo in OpenAIREPyrolysis combined to either thermal cracking or catalytic cracking of municipal solid waste was performed in a laboratory-scale facility consisting of a fixed-bed reactor followed by a tubular cracking reactor. The results showed great potential for the production of syngas. The incorporation of inexpensive and widely available dolomite in the cracking reactor (with a constant feedstock to calcined dolomite ratio of 5:1) favoured the catalytic cracking of the primary pyrolysis products towards H2 and CO in a temperature range of 800-900 °C. More particularly, it was possible at 900 °C to achieve a syngas consisting of more than 80 vol% CO and H2 with a heating value of 16 MJ/Nm3. Additionally, a homogeneous solid fuel was obtained as a solid residue, which can be used to provide additional energy to support the process or as a refuse-derived fuel. Thus, the great potential of this process was demonstrated for turning municipal solid waste into a valuable gas fraction that can be used directly as a fuel or as a source of different value-added products.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/119720Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2019.10.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 47visibility views 47 download downloads 218 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/119720Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2019.10.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors:Fernández García, José Ramón;
Fernández García, José Ramón
Fernández García, José Ramón in OpenAIREAbanades García, Juan Carlos;
Abanades García, Juan Carlos
Abanades García, Juan Carlos in OpenAIREMurillo Villuendas, Ramón;
Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREGrasa Adiego, Gemma;
Grasa Adiego, Gemma
Grasa Adiego, Gemma in OpenAIREhandle: 10261/104311
This work presents a conceptual design of a novel method to obtain hydrogen and/or electricity from natural gas and a concentrated stream of CO2 suitable for permanent geological storage. The method is based on the well known Sorption Enhanced Reforming (SER) principles for H2 production using a CaO/CaCO3 chemical loop. A second chemical loop of Cu/CuO is employed to solve the problem of endothermic CaCO3 calcination in order to regenerate the sorbent and release the concentrated CO2. The reduction reaction of CuO with natural gas, CO or H2 is shown to be feasible for providing the necessary heat for calcination. A preliminary design of the process has been carried out based on the principles of fixed bed operation and high temperature PSA, making use of the information offered by the literature to define the operating best conditions for the key gas-solid reaction steps and assuming ideal plug flow behaviour in all the reactors during the chemical reactions and gas-solid heat transfer. This makes it possible to define the precise operating windows for the process, so that the reactors can operate close to neutrally thermal conditions. Special material properties (particularly the Ca/inert and Cu/inert ratios) are required, but these are shown to be within the limits of what have been reported in the literature for other gas/solid reaction processes using the same reactions. The conclusion is that there is a great potential for achieving a high degree of energy efficiency with the proposed process by means of a sequence of reactions under the conditions described in this work. The authors acknowledge the grant provided by the Spanish Ministry of Industry and Commerce and the financial support awarded by the Spanish Science and Innovation Ministry under the project ENE2009-11353. Peer reviewed
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2011.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 116 citations 116 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 69visibility views 69 download downloads 177 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2011.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors:Fernández García, José Ramón;
Fernández García, José Ramón
Fernández García, José Ramón in OpenAIREAbanades García, Juan Carlos;
Abanades García, Juan Carlos
Abanades García, Juan Carlos in OpenAIREMurillo Villuendas, Ramón;
Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREGrasa Adiego, Gemma;
Grasa Adiego, Gemma
Grasa Adiego, Gemma in OpenAIREhandle: 10261/104311
This work presents a conceptual design of a novel method to obtain hydrogen and/or electricity from natural gas and a concentrated stream of CO2 suitable for permanent geological storage. The method is based on the well known Sorption Enhanced Reforming (SER) principles for H2 production using a CaO/CaCO3 chemical loop. A second chemical loop of Cu/CuO is employed to solve the problem of endothermic CaCO3 calcination in order to regenerate the sorbent and release the concentrated CO2. The reduction reaction of CuO with natural gas, CO or H2 is shown to be feasible for providing the necessary heat for calcination. A preliminary design of the process has been carried out based on the principles of fixed bed operation and high temperature PSA, making use of the information offered by the literature to define the operating best conditions for the key gas-solid reaction steps and assuming ideal plug flow behaviour in all the reactors during the chemical reactions and gas-solid heat transfer. This makes it possible to define the precise operating windows for the process, so that the reactors can operate close to neutrally thermal conditions. Special material properties (particularly the Ca/inert and Cu/inert ratios) are required, but these are shown to be within the limits of what have been reported in the literature for other gas/solid reaction processes using the same reactions. The conclusion is that there is a great potential for achieving a high degree of energy efficiency with the proposed process by means of a sequence of reactions under the conditions described in this work. The authors acknowledge the grant provided by the Spanish Ministry of Industry and Commerce and the financial support awarded by the Spanish Science and Innovation Ministry under the project ENE2009-11353. Peer reviewed
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2011.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 116 citations 116 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 69visibility views 69 download downloads 177 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2011.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors:Nuria Rodríguez;
Nuria Rodríguez
Nuria Rodríguez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREIsabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIRERamón Murillo;
+1 AuthorsRamón Murillo
Ramón Murillo in OpenAIRENuria Rodríguez;
Nuria Rodríguez
Nuria Rodríguez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREIsabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREJuan Carlos Abanades;
Juan Carlos Abanades
Juan Carlos Abanades in OpenAIREAbstract In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO 2 capture is presented. This process makes use of the CaO capability for CO 2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO 2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO 3 is calcined, the carbonator where the CO 2 produced in the combustor is captured, the supercritical steam cycle and the CO 2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO 3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO 2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO 2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO 2 compression system.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors:Nuria Rodríguez;
Nuria Rodríguez
Nuria Rodríguez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREIsabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIRERamón Murillo;
+1 AuthorsRamón Murillo
Ramón Murillo in OpenAIRENuria Rodríguez;
Nuria Rodríguez
Nuria Rodríguez in OpenAIREGemma Grasa;
Gemma Grasa
Gemma Grasa in OpenAIREIsabel Martínez;
Isabel Martínez
Isabel Martínez in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREJuan Carlos Abanades;
Juan Carlos Abanades
Juan Carlos Abanades in OpenAIREAbstract In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO 2 capture is presented. This process makes use of the CaO capability for CO 2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO 2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO 3 is calcined, the carbonator where the CO 2 produced in the combustor is captured, the supercritical steam cycle and the CO 2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO 3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO 2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO 2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO 2 compression system.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Wiley Authors:Navarro López, María Victoria;
Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
Mastral Lamarca, Ana María;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREPuy Marimon, Neus;
+1 AuthorsPuy Marimon, Neus
Puy Marimon, Neus in OpenAIRENavarro López, María Victoria;
Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
Mastral Lamarca, Ana María;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREPuy Marimon, Neus;
Bartrolí Molins, Jordi;Puy Marimon, Neus
Puy Marimon, Neus in OpenAIREdoi: 10.1002/aic.11848
handle: 10261/254611
AbstractIn this study, an investigation about the thermal behavior of four different woods was carried out. The distributed activation energy model was applied to study the effect of heating rate on the reaction of single solids. Results obtained were used in the curve prediction of fraction of mass remaining and rate of mass loss vs. temperature at more realistic heating rates. The possible calculation of biomass samples behavior in pyrolysis conditions as the summation of their constituents, lignin, cellulose, and hemi‐cellulose is also explored. All the samples show a weak interaction between the constituents which produce slight differences between experimental and calculated behavior. However, differences between experimental and calculated data lower than 2% offer a robust test of the applicability of the model on kinetic studies of a wide range of biomass samples, heating rates, data input format and equipment layout. © 2009 American Institute of Chemical Engineers AIChE J, 2009
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.11848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 78 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.11848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Wiley Authors:Navarro López, María Victoria;
Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
Mastral Lamarca, Ana María;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREPuy Marimon, Neus;
+1 AuthorsPuy Marimon, Neus
Puy Marimon, Neus in OpenAIRENavarro López, María Victoria;
Navarro López, María Victoria
Navarro López, María Victoria in OpenAIREMurillo Villuendas, Ramón;
Mastral Lamarca, Ana María;Murillo Villuendas, Ramón
Murillo Villuendas, Ramón in OpenAIREPuy Marimon, Neus;
Bartrolí Molins, Jordi;Puy Marimon, Neus
Puy Marimon, Neus in OpenAIREdoi: 10.1002/aic.11848
handle: 10261/254611
AbstractIn this study, an investigation about the thermal behavior of four different woods was carried out. The distributed activation energy model was applied to study the effect of heating rate on the reaction of single solids. Results obtained were used in the curve prediction of fraction of mass remaining and rate of mass loss vs. temperature at more realistic heating rates. The possible calculation of biomass samples behavior in pyrolysis conditions as the summation of their constituents, lignin, cellulose, and hemi‐cellulose is also explored. All the samples show a weak interaction between the constituents which produce slight differences between experimental and calculated behavior. However, differences between experimental and calculated data lower than 2% offer a robust test of the applicability of the model on kinetic studies of a wide range of biomass samples, heating rates, data input format and equipment layout. © 2009 American Institute of Chemical Engineers AIChE J, 2009
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.11848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 78 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAIChE JournalArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aic.11848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:J.R. Fernández;
J.R. Fernández
J.R. Fernández in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREJuan Carlos Abanades;
Juan Carlos Abanades
Juan Carlos Abanades in OpenAIREAbstract A dynamic model was developed to describe the oxidation of Cu in a large-scale Cu/CuO chemical looping process performed in adiabatic fixed-bed reactors at high pressure. An ideal plug flow pattern without axial dispersion or radial gradients and with negligible intra-particle concentrations and temperature gradients on the scale of millimeters were assumed. Cu oxidation is favoured at high pressure and therefore fast reaction rates and total oxygen conversion were achieved, even with low contents of oxygen in the feed (around 4–6%). Short breakthrough periods were achieved, which is highly favorable in operations carried out in alternative fixed-bed reactors. In order to maximize energy efficiency, the oxidation needs to be carried out at the highest allowable temperature, but CuO tends to decompose and agglomerate at relatively low temperatures (over 1223 K). Also the high exothermicity of Cu oxidation can generate hot spots in the reaction front. The use of a large recycle of nitrogen (previously cooled down) so that it mixes with regulates the temperature in the reaction front. At these conditions, the gas–solid heat exchange front advances faster than the reaction front and the oxidized bed is finally left at a lower temperature (as the cooled N2 recycle), which is insufficient to initiate the subsequent reduction of CuO to Cu. Therefore, an additional stage is introduced to carry out a gas–solid heat exchange between the hot N2 rich recycled gas and the oxidized bed. The bed is then ready for the next reaction step that involves the exothermic reduction of CuO. Operating parameters, such as the recirculation ratio (content of O2 in the feed) and the proportion of Cu in the solid bed, which have a substantial effect on Cu oxidation and CO2 capture efficiency, were also evaluated. Recirculation ratios higher than 0.75 and inlet gas temperatures of around 423 K limit the maximum temperature to reasonable values (generally below 1200 K). A trade-off between the O2 content in the feed (4–6%) and the amount of Cu in the bed (20–33%) leads to high energy efficiencies in CLC processes and minimal CaCO3 calcination in the case of the Ca–Cu looping process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:J.R. Fernández;
J.R. Fernández
J.R. Fernández in OpenAIRERamón Murillo;
Ramón Murillo
Ramón Murillo in OpenAIREJuan Carlos Abanades;
Juan Carlos Abanades
Juan Carlos Abanades in OpenAIREAbstract A dynamic model was developed to describe the oxidation of Cu in a large-scale Cu/CuO chemical looping process performed in adiabatic fixed-bed reactors at high pressure. An ideal plug flow pattern without axial dispersion or radial gradients and with negligible intra-particle concentrations and temperature gradients on the scale of millimeters were assumed. Cu oxidation is favoured at high pressure and therefore fast reaction rates and total oxygen conversion were achieved, even with low contents of oxygen in the feed (around 4–6%). Short breakthrough periods were achieved, which is highly favorable in operations carried out in alternative fixed-bed reactors. In order to maximize energy efficiency, the oxidation needs to be carried out at the highest allowable temperature, but CuO tends to decompose and agglomerate at relatively low temperatures (over 1223 K). Also the high exothermicity of Cu oxidation can generate hot spots in the reaction front. The use of a large recycle of nitrogen (previously cooled down) so that it mixes with regulates the temperature in the reaction front. At these conditions, the gas–solid heat exchange front advances faster than the reaction front and the oxidized bed is finally left at a lower temperature (as the cooled N2 recycle), which is insufficient to initiate the subsequent reduction of CuO to Cu. Therefore, an additional stage is introduced to carry out a gas–solid heat exchange between the hot N2 rich recycled gas and the oxidized bed. The bed is then ready for the next reaction step that involves the exothermic reduction of CuO. Operating parameters, such as the recirculation ratio (content of O2 in the feed) and the proportion of Cu in the solid bed, which have a substantial effect on Cu oxidation and CO2 capture efficiency, were also evaluated. Recirculation ratios higher than 0.75 and inlet gas temperatures of around 423 K limit the maximum temperature to reasonable values (generally below 1200 K). A trade-off between the O2 content in the feed (4–6%) and the amount of Cu in the bed (20–33%) leads to high energy efficiencies in CLC processes and minimal CaCO3 calcination in the case of the Ca–Cu looping process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu