Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling of Cu oxidation in an adiabatic fixed-bed reactor with N2 recycling

Authors: J.R. Fernández; Ramón Murillo; Juan Carlos Abanades;

Modeling of Cu oxidation in an adiabatic fixed-bed reactor with N2 recycling

Abstract

Abstract A dynamic model was developed to describe the oxidation of Cu in a large-scale Cu/CuO chemical looping process performed in adiabatic fixed-bed reactors at high pressure. An ideal plug flow pattern without axial dispersion or radial gradients and with negligible intra-particle concentrations and temperature gradients on the scale of millimeters were assumed. Cu oxidation is favoured at high pressure and therefore fast reaction rates and total oxygen conversion were achieved, even with low contents of oxygen in the feed (around 4–6%). Short breakthrough periods were achieved, which is highly favorable in operations carried out in alternative fixed-bed reactors. In order to maximize energy efficiency, the oxidation needs to be carried out at the highest allowable temperature, but CuO tends to decompose and agglomerate at relatively low temperatures (over 1223 K). Also the high exothermicity of Cu oxidation can generate hot spots in the reaction front. The use of a large recycle of nitrogen (previously cooled down) so that it mixes with regulates the temperature in the reaction front. At these conditions, the gas–solid heat exchange front advances faster than the reaction front and the oxidized bed is finally left at a lower temperature (as the cooled N2 recycle), which is insufficient to initiate the subsequent reduction of CuO to Cu. Therefore, an additional stage is introduced to carry out a gas–solid heat exchange between the hot N2 rich recycled gas and the oxidized bed. The bed is then ready for the next reaction step that involves the exothermic reduction of CuO. Operating parameters, such as the recirculation ratio (content of O2 in the feed) and the proportion of Cu in the solid bed, which have a substantial effect on Cu oxidation and CO2 capture efficiency, were also evaluated. Recirculation ratios higher than 0.75 and inlet gas temperatures of around 423 K limit the maximum temperature to reasonable values (generally below 1200 K). A trade-off between the O2 content in the feed (4–6%) and the amount of Cu in the bed (20–33%) leads to high energy efficiencies in CLC processes and minimal CaCO3 calcination in the case of the Ca–Cu looping process.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%