Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
16 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohamed A. Eltawil; Mohamed A. Eltawil; Yousef Al-Molhem;

    This research aims to investigate the effect of integrating a simple solar collector, floatable black wicks, and orientation as modified double-slope solar still (MDSSS), and to compare its performance with conventional double-slope solar still (CDSSS). Costs of the developed desalination system were estimated, and its performance was compared with the previous literatures. A black hose was coiled and used as simple solar collector for preheating the saline water that is fed to the solar still. The floatable black wicks were used to increase the evaporation surface area and cause a localization of absorbed insolation at the evaporation surface of saline water. The longitudinal axis of solar still was oriented to north-south and east-west, the and productivity from each side was quantified. The northern side of MDSSS has more yield than the southern side by 33.98% for the east-west orientation and preheating. For the east-west orientation, preheating, and floatable black wicks, the total yield of MDSSS exceeded the CDSSS by 45.65%. And at the same conditions, the daily average efficiency of southern and northern sides of MDSSS was 25.33 and 37.25%, while for CDSSS, it was 13.87 and 30.73%, respectively. Estimated costs revealed that cost per liter water was about 0.062 and 0.059 $ for CDSSS and MDSSS, respectively. Solar still can provide a reasonable amount of water for irrigation based on daily production by installing the MDSSS in furrow, but keeping the longitudinal axis to east-west can secure more amount of water. The used modifications improved the solar still productivity and efficiency. Graphical abstract.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    38
    citations38
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Liqiang Yuan; Zhao Zhengming; Mohamed A. Eltawil; Mohamed A. Eltawil;

    Energy is an essential ingredient of socio-economic development and economic growth. Renewable energy provides a variable and environmental friendly option and national energy security at a time when decreasing global reserves of fossil fuels threatens the long-term sustainability of global economy. The integration of renewable resources in desalination and water purification is becoming increasingly attractive. This is justified by the fact that areas of fresh water shortages have plenty of solar energy and these technologies have low operating and maintenance costs. In this paper an attempt has been made to present a review, in brief, work of the highlights that have been achieved during the recent years worldwide and the state-of-the-art for most important efforts in the field of desalination by renewable energies, with emphasis on technologies and economics. The review also includes water sources, demand, availability of potable water and purification methods. The classification of distillation units has been done on the basis of literature survey till today. A comparative study between different renewable energy technologies powered desalination systems as well as economics have been done. The real problem in these technologies is the optimum economic design and evaluation of the combined plants in order to be economically viable for remote or arid regions. Wind energy technology is cheaper than the conventional ones, and used extensively around the world. The slow implementation of renewable energy projects especially in the developing countries are mostly due to the governments subsides of conventional fuels products and electricity. The economic analyses carried out so far have not been able to provide a strong basis for comparing economic viability of each desalination technology. The economic performances expressed in terms of cost of water production have been based on different system capacity, system energy source, system component, and water source. These differences make it difficult, if not impossible, to assess the economic performance of a particular technology and compare it with others. Reverse osmosis is becoming the technology of choice with continued advances being made to reduce the total energy consumption and lower the cost of water produced.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    449
    citations449
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohamed A. Eltawil; Elsayed Ahmed Elnashar; Z.M. Omara;

    Abstract This paper presents a new hybrid desalination approach comprising of evacuated solar water heater, jut geotextile and solar still. An evacuated solar water heater is integrated with the desalination stills to evaluate the continuity production of distillate. Two identical portable solar wick and one basin solar stills were designed to evaluate the systems performance. Jut linen woven fabrics were stitched to the plane wick (lengthwise and crosswise) and integrated with solar still. The jut fabrics were used to reduce the rate of water flow to the appropriate rate. The following variables are studied: Single and double layers wick; plane wick, lengthwise and crosswise linen; feeding hot water during night and two base slope angles of wick still (20 and 30°). Theoretical analysis is verified through experiments. Water productivity is increased by 114% over conventional still for double layer square wick (DLSW) solar still at 30° base slope angle. The daily average efficiency of DLSW was 71.5%. During experimentation, the distillate water productivity increased by 215% when hot brackish water was fed during night time.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Desalination
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    173
    citations173
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Desalination
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhengming Zhao; Mohamed A. Eltawil; Mohamed A. Eltawil;

    The photovoltaic (PV) system is one of the renewable energies that attract the attention of researchers in the recent decades. The PV generators exhibit nonlinear I–V and P–V characteristics. The maximum power produced varies with both irradiance and temperature. Since the conversion efficiency of PV arrays is very low, it requires maximum power point tracking (MPPT) control techniques. The maximum power point tracking (MPPT) is the automatic control algorithm to adjust the power interfaces and achieve the greatest possible power harvest, during moment to moment variations of light level, shading, temperature, and photovoltaic module characteristics. The purpose of the MPPT is to adjust the solar operating voltage close to the MPP under changing atmospheric conditions. It has become an essential component to evaluate the design performance of PV power systems. This investigation aims to assess different MPPT techniques, provide background knowledge, implementation topology, grid interconnection of PV and solar microinverter requirements presented in the literature, doing depth comparisons between them with a brief discussion. The MPPT merits, demerits and classification, which can be used as a reference for future research related to optimizing the solar power generation, are also discussed. Conventional methods are easy to implement but they suffer from oscillations at MPP and tracking speed is less due to fixed perturb step. Intelligent methods are efficient; oscillations are lesser at MPP in steady state and tracked quickly in comparison to conventional methods.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    394
    citations394
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdulmohsen A. Algonaian; Mohamed A. Eltawil; Mohamed A. Eltawil; Baher M. A. Amer; +1 Authors

    Abstract The traditional method (TM) of dates syrup (dibs) extraction takes long extraction period and has poor productivity. The TM depends on putting heavyweights above the heap of dates at room temperature, and wait until dibs extraction. This study aims to design two innovative solar electro-thermal energy systems with hydraulic pressure to extract dates syrup. The electro-thermal systems were used to heat and circulate dates dibs extraction medium, while hydraulic pressure (6 ± 1 and 7 ± 1 bar) was used to squeeze dates instead of traditional weights. Solar water bath (SWB) and solar air bath with rocks storage bed (SABWRSB) were used to catalyst the extraction process. The syrup dibs quality and quantity from different methods were evaluated. For innovative methods, the dates temperature inside the extraction tank was about 49–54 °C. The efficiency of the SWB and SABWRSB for syrup extraction was 48.87% and 13.16%, respectively. Using SWB saved time about 38%, and increased the productivity by 28.75% and 36.66% at a pressure of 6 ± 1 and 7 ± 1 bar, respectively, compared to TM. Heating with SWB increased the productivity by 3.6% and 5.68% compared to SABWRSB at 6 ± 1 and 7 ± 1 bar, respectively. The SWB is recommended for providing the appropriate environment for the dates dibs extraction.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mostafa M. Azam; Abdulrahman O. Alghannam; Mohamed A. Eltawil; Mohamed A. Eltawil;

    Abstract Solar PV system powered mixed-mode solar tunnel dryer (STD) for drying potato chips was studied. The STD was equipped with axial dc fan and flat plate solar air collector to enhance the thermal performance by maintaining a reasonable high temperature inside the drying chamber. The STD performance was evaluated without load and with load; and without and with using thermal curtain above potato slices during sunny days. Different airflow rates (2.1, 3.12 and 4.18 m3/min) and pre-treatments for potato slices were investigated. The PV powered STD exhibited the ability to produce chips with safe moisture level within 6 and 7 h for without and with using thermal curtain, respectively at airflow rate of 3.12 m3/min. The frying time of potato chips was shortened to be only 15 s. The best chips color was achieved with 1% sodium meta-bi-sulphite with using black thermal curtain above slices. Predicted and experimental moisture ratio of chips using developed STD were compared through several thin-layer drying models. The highest drying efficiency of 28.49 and 34.29% was recorded at airflow of 0.0786 kg/s in case of without and with using thermal curtain, respectively. The developed STD provides chips in good quality and suitable for rural areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    102
    citations102
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Swellam W. Sharshir; Mohamed A. Eltawil; Mohamed A. Eltawil; Youssef M. Ellakany;

    Abstract In this work, the performance of solar still was enhanced using nanotechnology and cotton hung pad. The cotton hung pad has threads with ends immersed in seawater, hence the capillary property moves the water upward towards the evaporation surface. The cotton hung pad (small layer), and nanoparticles have a significant effect on localizing the heat that speed up the seawater evaporation rate and improve the performance. The Fe3O4, and CuO nanoparticle materials are used and spreaded to the top surface of the cotton pad with different concentrations in the range of 25 g/m2 to 300 g/m2. Also, the exergoeconomic of the desalination system and environmental analysis are investigated. The results showed an enhancement of about 17.55% in the productivity for the modified solar still (MSS) with cotton hung alone compared with the TSS. The configuration of cotton hung pad and nanoparticles with a concentration of 150 g/m2 enhanced the distillate productivity by about 42.3% and 56.6% for Fe3O4 and CuO nanoparticles, respectively compared to TSS. The highest efficiency was about 51%, 45%, 34.5% and 30% for MSS with CuO, MSS with Fe3O4, cotton hung pad only and TSS, respectively. The exergy values showed enhancement of 103% for MSS with CuO compared to TSS. The economic analysis of different modifications indicated that the cost per liter of fresh water was 0.018 $, 0.016 $, and 0.015 $ for MSS with cotton pad and Fe3O4; cotton pad and CuO; and cotton pad only, respectively while the cost for TSS was 0.0189 US$. Furthermore, the exergoeconomic and environmental analysis of enhanced solar stills showed that these systems are cost-effective and helpful in cutting down carbon footprint by mitigation of CO2. Overall, integrating nanoparticles with cotton hung pads were proved to be very effective and promising from economic, environmental, and exergy point of views.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Z.M. Omara; Mohamed A. Eltawil;

    Abstract This work presents a design and installation of solar dish concentrator (SDC), simple solar collector and modified boiler for brackish water desalination. The design of two axes tracking system is performed using an open-loop control based on programmable logic controllers (PLC). Glass mirrors are used as reflective surface for dish concentrator. A coiled black rubber hose is used to preheat brackish water before feeding to the boiler. A mini single slope-air tight solar still is designed and installed at the focus of dish concentrator which is used as a boiler. The automatic tracking system, new boiler design; and with and without preheating of brackish water are investigated. The developed desalination system is evaluated and compared with the conventional solar still (CSS). The results indicated that, the daily average of distillate water was 6.7 l/m 2 /day for SDC with preheating of brackish water, while the distillate productivity was 1.5 l/0.5 m 2 /day for CSS. In the present study, the daily average efficiency of SDC and CSS was 68 and 34%, respectively. The increase in distillate production for SDC is about 244% and 347% higher than that of CSS without and with preheating, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Desalination
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    108
    citations108
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Desalination
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abd Elnaby Kabeel; Mohamed Kamal Ahmed Ali; Nuo Yang; Guilong Peng; +3 Authors

    Abstract This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    169
    citations169
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mohamed A. Eltawil; Maged Mohammed; Nayef M. Alqahtani;

    Display refrigerators consume significantly high energy, and improving their efficiency is essential to minimize energy consumption and greenhouse gas emissions. Therefore, providing the refrigeration system with a reliable and energy-efficient mechanism is a real challenge. This study aims to design and evaluate an intelligent control system (ICS) using artificial neural networks (ANN) for the performance optimization of solar-powered display refrigerators (SPDRs). The SPDR was operated using the traditional control system at a fixed frequency of 60 Hz and then operated based on variable frequencies ranging from 40 to 60 Hz using the designed ANN-based ICS combined with a variable speed drive. A stand-alone PV system provided the refrigerator with the required energy at the two control options. For the performance evaluation, the operating conditions of the SPDR after the modification of its control system were compared with its performance with a traditional control system (TCS) at target refrigeration temperatures of 1, 3, and 5 °C and ambient temperatures of 23, 29, and 35 °C. Based on the controlled variable frequency speed by the modified control system (MCS), the power, energy consumption, and coefficient of performance (COP) of the SPDR are improved. The results show that both refrigeration control mechanisms maintain the same cooling temperature, but the traditional refrigerator significantly consumes more energy (p < 0.05). At the same target cooling temperature, increasing the ambient temperature decreased the COP for the SPDR with both the TCS and MCS. The average daily COP of the SPDR varied from 2.8 to 3.83 and from 1.91 to 2.82 for the SPDR with the TCS and MCS, respectively. The comparison results of the two refrigerators’ conditions indicated that the developed ICS for the SPDR saved about 35.5% of the energy at the 5 °C target cooling temperature and worked with smoother power when the ambient temperature was high. The COP of the SPDR with the MCS was higher than the TCS by 26.37%, 26.59%, and 24.22% at the average daily ambient temperature of 23 °C, 29 °C, and 35 °C, respectively. The developed ANN-based control system optimized the SPDR and proved to be a suitable tool for the refrigeration industry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
16 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohamed A. Eltawil; Mohamed A. Eltawil; Yousef Al-Molhem;

    This research aims to investigate the effect of integrating a simple solar collector, floatable black wicks, and orientation as modified double-slope solar still (MDSSS), and to compare its performance with conventional double-slope solar still (CDSSS). Costs of the developed desalination system were estimated, and its performance was compared with the previous literatures. A black hose was coiled and used as simple solar collector for preheating the saline water that is fed to the solar still. The floatable black wicks were used to increase the evaporation surface area and cause a localization of absorbed insolation at the evaporation surface of saline water. The longitudinal axis of solar still was oriented to north-south and east-west, the and productivity from each side was quantified. The northern side of MDSSS has more yield than the southern side by 33.98% for the east-west orientation and preheating. For the east-west orientation, preheating, and floatable black wicks, the total yield of MDSSS exceeded the CDSSS by 45.65%. And at the same conditions, the daily average efficiency of southern and northern sides of MDSSS was 25.33 and 37.25%, while for CDSSS, it was 13.87 and 30.73%, respectively. Estimated costs revealed that cost per liter water was about 0.062 and 0.059 $ for CDSSS and MDSSS, respectively. Solar still can provide a reasonable amount of water for irrigation based on daily production by installing the MDSSS in furrow, but keeping the longitudinal axis to east-west can secure more amount of water. The used modifications improved the solar still productivity and efficiency. Graphical abstract.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    38
    citations38
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Liqiang Yuan; Zhao Zhengming; Mohamed A. Eltawil; Mohamed A. Eltawil;

    Energy is an essential ingredient of socio-economic development and economic growth. Renewable energy provides a variable and environmental friendly option and national energy security at a time when decreasing global reserves of fossil fuels threatens the long-term sustainability of global economy. The integration of renewable resources in desalination and water purification is becoming increasingly attractive. This is justified by the fact that areas of fresh water shortages have plenty of solar energy and these technologies have low operating and maintenance costs. In this paper an attempt has been made to present a review, in brief, work of the highlights that have been achieved during the recent years worldwide and the state-of-the-art for most important efforts in the field of desalination by renewable energies, with emphasis on technologies and economics. The review also includes water sources, demand, availability of potable water and purification methods. The classification of distillation units has been done on the basis of literature survey till today. A comparative study between different renewable energy technologies powered desalination systems as well as economics have been done. The real problem in these technologies is the optimum economic design and evaluation of the combined plants in order to be economically viable for remote or arid regions. Wind energy technology is cheaper than the conventional ones, and used extensively around the world. The slow implementation of renewable energy projects especially in the developing countries are mostly due to the governments subsides of conventional fuels products and electricity. The economic analyses carried out so far have not been able to provide a strong basis for comparing economic viability of each desalination technology. The economic performances expressed in terms of cost of water production have been based on different system capacity, system energy source, system component, and water source. These differences make it difficult, if not impossible, to assess the economic performance of a particular technology and compare it with others. Reverse osmosis is becoming the technology of choice with continued advances being made to reduce the total energy consumption and lower the cost of water produced.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    449
    citations449
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohamed A. Eltawil; Elsayed Ahmed Elnashar; Z.M. Omara;

    Abstract This paper presents a new hybrid desalination approach comprising of evacuated solar water heater, jut geotextile and solar still. An evacuated solar water heater is integrated with the desalination stills to evaluate the continuity production of distillate. Two identical portable solar wick and one basin solar stills were designed to evaluate the systems performance. Jut linen woven fabrics were stitched to the plane wick (lengthwise and crosswise) and integrated with solar still. The jut fabrics were used to reduce the rate of water flow to the appropriate rate. The following variables are studied: Single and double layers wick; plane wick, lengthwise and crosswise linen; feeding hot water during night and two base slope angles of wick still (20 and 30°). Theoretical analysis is verified through experiments. Water productivity is increased by 114% over conventional still for double layer square wick (DLSW) solar still at 30° base slope angle. The daily average efficiency of DLSW was 71.5%. During experimentation, the distillate water productivity increased by 215% when hot brackish water was fed during night time.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Desalination
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    173
    citations173
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Desalination
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhengming Zhao; Mohamed A. Eltawil; Mohamed A. Eltawil;

    The photovoltaic (PV) system is one of the renewable energies that attract the attention of researchers in the recent decades. The PV generators exhibit nonlinear I–V and P–V characteristics. The maximum power produced varies with both irradiance and temperature. Since the conversion efficiency of PV arrays is very low, it requires maximum power point tracking (MPPT) control techniques. The maximum power point tracking (MPPT) is the automatic control algorithm to adjust the power interfaces and achieve the greatest possible power harvest, during moment to moment variations of light level, shading, temperature, and photovoltaic module characteristics. The purpose of the MPPT is to adjust the solar operating voltage close to the MPP under changing atmospheric conditions. It has become an essential component to evaluate the design performance of PV power systems. This investigation aims to assess different MPPT techniques, provide background knowledge, implementation topology, grid interconnection of PV and solar microinverter requirements presented in the literature, doing depth comparisons between them with a brief discussion. The MPPT merits, demerits and classification, which can be used as a reference for future research related to optimizing the solar power generation, are also discussed. Conventional methods are easy to implement but they suffer from oscillations at MPP and tracking speed is less due to fixed perturb step. Intelligent methods are efficient; oscillations are lesser at MPP in steady state and tracked quickly in comparison to conventional methods.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    394
    citations394
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdulmohsen A. Algonaian; Mohamed A. Eltawil; Mohamed A. Eltawil; Baher M. A. Amer; +1 Authors

    Abstract The traditional method (TM) of dates syrup (dibs) extraction takes long extraction period and has poor productivity. The TM depends on putting heavyweights above the heap of dates at room temperature, and wait until dibs extraction. This study aims to design two innovative solar electro-thermal energy systems with hydraulic pressure to extract dates syrup. The electro-thermal systems were used to heat and circulate dates dibs extraction medium, while hydraulic pressure (6 ± 1 and 7 ± 1 bar) was used to squeeze dates instead of traditional weights. Solar water bath (SWB) and solar air bath with rocks storage bed (SABWRSB) were used to catalyst the extraction process. The syrup dibs quality and quantity from different methods were evaluated. For innovative methods, the dates temperature inside the extraction tank was about 49–54 °C. The efficiency of the SWB and SABWRSB for syrup extraction was 48.87% and 13.16%, respectively. Using SWB saved time about 38%, and increased the productivity by 28.75% and 36.66% at a pressure of 6 ± 1 and 7 ± 1 bar, respectively, compared to TM. Heating with SWB increased the productivity by 3.6% and 5.68% compared to SABWRSB at 6 ± 1 and 7 ± 1 bar, respectively. The SWB is recommended for providing the appropriate environment for the dates dibs extraction.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mostafa M. Azam; Abdulrahman O. Alghannam; Mohamed A. Eltawil; Mohamed A. Eltawil;

    Abstract Solar PV system powered mixed-mode solar tunnel dryer (STD) for drying potato chips was studied. The STD was equipped with axial dc fan and flat plate solar air collector to enhance the thermal performance by maintaining a reasonable high temperature inside the drying chamber. The STD performance was evaluated without load and with load; and without and with using thermal curtain above potato slices during sunny days. Different airflow rates (2.1, 3.12 and 4.18 m3/min) and pre-treatments for potato slices were investigated. The PV powered STD exhibited the ability to produce chips with safe moisture level within 6 and 7 h for without and with using thermal curtain, respectively at airflow rate of 3.12 m3/min. The frying time of potato chips was shortened to be only 15 s. The best chips color was achieved with 1% sodium meta-bi-sulphite with using black thermal curtain above slices. Predicted and experimental moisture ratio of chips using developed STD were compared through several thin-layer drying models. The highest drying efficiency of 28.49 and 34.29% was recorded at airflow of 0.0786 kg/s in case of without and with using thermal curtain, respectively. The developed STD provides chips in good quality and suitable for rural areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    102
    citations102
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Swellam W. Sharshir; Mohamed A. Eltawil; Mohamed A. Eltawil; Youssef M. Ellakany;

    Abstract In this work, the performance of solar still was enhanced using nanotechnology and cotton hung pad. The cotton hung pad has threads with ends immersed in seawater, hence the capillary property moves the water upward towards the evaporation surface. The cotton hung pad (small layer), and nanoparticles have a significant effect on localizing the heat that speed up the seawater evaporation rate and improve the performance. The Fe3O4, and CuO nanoparticle materials are used and spreaded to the top surface of the cotton pad with different concentrations in the range of 25 g/m2 to 300 g/m2. Also, the exergoeconomic of the desalination system and environmental analysis are investigated. The results showed an enhancement of about 17.55% in the productivity for the modified solar still (MSS) with cotton hung alone compared with the TSS. The configuration of cotton hung pad and nanoparticles with a concentration of 150 g/m2 enhanced the distillate productivity by about 42.3% and 56.6% for Fe3O4 and CuO nanoparticles, respectively compared to TSS. The highest efficiency was about 51%, 45%, 34.5% and 30% for MSS with CuO, MSS with Fe3O4, cotton hung pad only and TSS, respectively. The exergy values showed enhancement of 103% for MSS with CuO compared to TSS. The economic analysis of different modifications indicated that the cost per liter of fresh water was 0.018 $, 0.016 $, and 0.015 $ for MSS with cotton pad and Fe3O4; cotton pad and CuO; and cotton pad only, respectively while the cost for TSS was 0.0189 US$. Furthermore, the exergoeconomic and environmental analysis of enhanced solar stills showed that these systems are cost-effective and helpful in cutting down carbon footprint by mitigation of CO2. Overall, integrating nanoparticles with cotton hung pads were proved to be very effective and promising from economic, environmental, and exergy point of views.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Z.M. Omara; Mohamed A. Eltawil;

    Abstract This work presents a design and installation of solar dish concentrator (SDC), simple solar collector and modified boiler for brackish water desalination. The design of two axes tracking system is performed using an open-loop control based on programmable logic controllers (PLC). Glass mirrors are used as reflective surface for dish concentrator. A coiled black rubber hose is used to preheat brackish water before feeding to the boiler. A mini single slope-air tight solar still is designed and installed at the focus of dish concentrator which is used as a boiler. The automatic tracking system, new boiler design; and with and without preheating of brackish water are investigated. The developed desalination system is evaluated and compared with the conventional solar still (CSS). The results indicated that, the daily average of distillate water was 6.7 l/m 2 /day for SDC with preheating of brackish water, while the distillate productivity was 1.5 l/0.5 m 2 /day for CSS. In the present study, the daily average efficiency of SDC and CSS was 68 and 34%, respectively. The increase in distillate production for SDC is about 244% and 347% higher than that of CSS without and with preheating, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Desalination
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    108
    citations108
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Desalination
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abd Elnaby Kabeel; Mohamed Kamal Ahmed Ali; Nuo Yang; Guilong Peng; +3 Authors

    Abstract This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    169
    citations169
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mohamed A. Eltawil; Maged Mohammed; Nayef M. Alqahtani;

    Display refrigerators consume significantly high energy, and improving their efficiency is essential to minimize energy consumption and greenhouse gas emissions. Therefore, providing the refrigeration system with a reliable and energy-efficient mechanism is a real challenge. This study aims to design and evaluate an intelligent control system (ICS) using artificial neural networks (ANN) for the performance optimization of solar-powered display refrigerators (SPDRs). The SPDR was operated using the traditional control system at a fixed frequency of 60 Hz and then operated based on variable frequencies ranging from 40 to 60 Hz using the designed ANN-based ICS combined with a variable speed drive. A stand-alone PV system provided the refrigerator with the required energy at the two control options. For the performance evaluation, the operating conditions of the SPDR after the modification of its control system were compared with its performance with a traditional control system (TCS) at target refrigeration temperatures of 1, 3, and 5 °C and ambient temperatures of 23, 29, and 35 °C. Based on the controlled variable frequency speed by the modified control system (MCS), the power, energy consumption, and coefficient of performance (COP) of the SPDR are improved. The results show that both refrigeration control mechanisms maintain the same cooling temperature, but the traditional refrigerator significantly consumes more energy (p < 0.05). At the same target cooling temperature, increasing the ambient temperature decreased the COP for the SPDR with both the TCS and MCS. The average daily COP of the SPDR varied from 2.8 to 3.83 and from 1.91 to 2.82 for the SPDR with the TCS and MCS, respectively. The comparison results of the two refrigerators’ conditions indicated that the developed ICS for the SPDR saved about 35.5% of the energy at the 5 °C target cooling temperature and worked with smoother power when the ambient temperature was high. The COP of the SPDR with the MCS was higher than the TCS by 26.37%, 26.59%, and 24.22% at the average daily ambient temperature of 23 °C, 29 °C, and 35 °C, respectively. The developed ANN-based control system optimized the SPDR and proved to be a suitable tool for the refrigeration industry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph