- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Proceedings of the National Academy of Sciences Wenjun Meng; Qirui Zhong; Yilin Chen; Huizhong Shen; Xiao Yun; Kirk R. Smith; Bengang Li; Junfeng Liu; Xilong Wang; Jianmin Ma; Hefa Cheng; Eddy Y. Zeng; Dabo Guan; Armistead G. Russell; Shu Tao;SignificanceImpacts of a newly launched rural residential solid fuel substitution campaign in China’s Beijing–Tianjin–Hebei area on energy, emission, air quality, and exposure reveal that abating solid fuels will significantly reduce ambient and indoor air pollution, resulting in major health benefits. The campaign will help accelerate China’s energy transition and reduce PM2.5emission and exposure. The expected exposure reduction is largely due to improved indoor air quality, resulting in greater benefits to women.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1904182116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 183 citations 183 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1904182116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:IOP Publishing Authors: Jose Goldemberg; Javier Martinez-Gomez; Ambuj Sagar; Kirk R Smith;Air pollution from the use of solid household fuels is now recognized to be a major health risk in developing countries. Accordingly, there has been some shift in development thinking and investment from previous efforts, which has focused only on improving the efficiency of household fuel use, to those that focus on reducing exposure to the air pollution that leads to health impact. Unfortunately, however, this is occurring just as the climate agenda has come to dominate much of the discourse and action on international sustainable development. Thus, instead of optimizing approaches that centrally focus on the large health impact, the household energy agenda has been hampered by the constraints imposed by a narrow definition of sustainability—one primarily driven by the desire to mitigate greenhouse emissions by relying on renewable biomass fueling so-called improved cookstoves. In reality, however, solid biomass is extremely difficult to burn sufficiently cleanly in household stoves to reach health goals. In comparison to the international development community, however, some large countries, notably Brazil historically and more recently, India have substantially expanded the use of liquefied petroleum gas (LPG) in their household energy mix, using their own resources, having a major impact on their national energy picture. The net climate impact of such approaches compared to current biomass stoves is minimal or non-existent, and the social and health benefits are, in contrast, potentially great. LPG can be seen as a transition fuel for clean household energy, with induction stoves powered by renewables as the holy grail (an approach already being adopted by Ecuador as also discussed here). The enormous human and social benefits of clean energy, rather than climate concerns, should dominate the household energy access agenda today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa49d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa49d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedJia Xing; Xi Lu; Shuxiao Wang; Tong Wang; Dian Ding; Sha Yu; Drew Shindell; Yang Ou; Lidia Morawska; Siwei Li; Lu Ren; Yuqiang Zhang; Dan Loughlin; Haotian Zheng; Bin Zhao; Shuchang Liu; Kirk R. Smith; Jiming Hao;Significance Pathways for China to achieve its dual targets of air quality and CO 2 mitigation in 2035 were investigated through a newly developed evaluation framework coupling integrated assessment and air quality models. Results indicate that the low-carbon energy policies, traditionally regarded as a primary result of climate mitigation, are likely driven more by the efforts on air quality attainment in China. To achieve air quality attainment in China could lead to more reduction in CO 2 emissions than its Nationally Determined Contribution. In addition, stronger low-carbon policies will bring significant benefits to public health via improvements in air quality. This study also provides a valuable reference for other developing countries to address their duel challenges of climate change and air pollution.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2013297117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2013297117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustriaPublisher:Proceedings of the National Academy of Sciences Yue Qin; Fabian Wagner; Noah Scovronick; Wei Peng; Junnan Yang; Tong Zhu; Kirk R. Smith; Denise L. Mauzerall;Significance China’s coal-based synthetic natural gas (SNG) projects can reduce air pollution and associated premature mortality by substituting for direct coal use in power, industry, and households. These benefits, however, come with increased CO 2 emissions unless carbon capture and storage (CCS) is applied in SNG production. Even with CCS, SNG has higher CO 2 emissions than conventional natural gas. In the United States, increases in natural gas supplies have been primarily deployed to the power sector. In China, however, due to inefficient and uncontrolled coal combustion in households, we find that allocating currently available SNG to the residential sector provides the largest air quality and health benefits and smallest climate penalties compared with allocation to the power or industrial sectors.
IIASA DARE arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1703167114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1703167114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Proceedings of the National Academy of Sciences Wenjun Meng; Qirui Zhong; Yilin Chen; Huizhong Shen; Xiao Yun; Kirk R. Smith; Bengang Li; Junfeng Liu; Xilong Wang; Jianmin Ma; Hefa Cheng; Eddy Y. Zeng; Dabo Guan; Armistead G. Russell; Shu Tao;SignificanceImpacts of a newly launched rural residential solid fuel substitution campaign in China’s Beijing–Tianjin–Hebei area on energy, emission, air quality, and exposure reveal that abating solid fuels will significantly reduce ambient and indoor air pollution, resulting in major health benefits. The campaign will help accelerate China’s energy transition and reduce PM2.5emission and exposure. The expected exposure reduction is largely due to improved indoor air quality, resulting in greater benefits to women.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1904182116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 183 citations 183 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1904182116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:IOP Publishing Authors: Jose Goldemberg; Javier Martinez-Gomez; Ambuj Sagar; Kirk R Smith;Air pollution from the use of solid household fuels is now recognized to be a major health risk in developing countries. Accordingly, there has been some shift in development thinking and investment from previous efforts, which has focused only on improving the efficiency of household fuel use, to those that focus on reducing exposure to the air pollution that leads to health impact. Unfortunately, however, this is occurring just as the climate agenda has come to dominate much of the discourse and action on international sustainable development. Thus, instead of optimizing approaches that centrally focus on the large health impact, the household energy agenda has been hampered by the constraints imposed by a narrow definition of sustainability—one primarily driven by the desire to mitigate greenhouse emissions by relying on renewable biomass fueling so-called improved cookstoves. In reality, however, solid biomass is extremely difficult to burn sufficiently cleanly in household stoves to reach health goals. In comparison to the international development community, however, some large countries, notably Brazil historically and more recently, India have substantially expanded the use of liquefied petroleum gas (LPG) in their household energy mix, using their own resources, having a major impact on their national energy picture. The net climate impact of such approaches compared to current biomass stoves is minimal or non-existent, and the social and health benefits are, in contrast, potentially great. LPG can be seen as a transition fuel for clean household energy, with induction stoves powered by renewables as the holy grail (an approach already being adopted by Ecuador as also discussed here). The enormous human and social benefits of clean energy, rather than climate concerns, should dominate the household energy access agenda today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa49d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa49d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedJia Xing; Xi Lu; Shuxiao Wang; Tong Wang; Dian Ding; Sha Yu; Drew Shindell; Yang Ou; Lidia Morawska; Siwei Li; Lu Ren; Yuqiang Zhang; Dan Loughlin; Haotian Zheng; Bin Zhao; Shuchang Liu; Kirk R. Smith; Jiming Hao;Significance Pathways for China to achieve its dual targets of air quality and CO 2 mitigation in 2035 were investigated through a newly developed evaluation framework coupling integrated assessment and air quality models. Results indicate that the low-carbon energy policies, traditionally regarded as a primary result of climate mitigation, are likely driven more by the efforts on air quality attainment in China. To achieve air quality attainment in China could lead to more reduction in CO 2 emissions than its Nationally Determined Contribution. In addition, stronger low-carbon policies will bring significant benefits to public health via improvements in air quality. This study also provides a valuable reference for other developing countries to address their duel challenges of climate change and air pollution.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2013297117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2013297117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustriaPublisher:Proceedings of the National Academy of Sciences Yue Qin; Fabian Wagner; Noah Scovronick; Wei Peng; Junnan Yang; Tong Zhu; Kirk R. Smith; Denise L. Mauzerall;Significance China’s coal-based synthetic natural gas (SNG) projects can reduce air pollution and associated premature mortality by substituting for direct coal use in power, industry, and households. These benefits, however, come with increased CO 2 emissions unless carbon capture and storage (CCS) is applied in SNG production. Even with CCS, SNG has higher CO 2 emissions than conventional natural gas. In the United States, increases in natural gas supplies have been primarily deployed to the power sector. In China, however, due to inefficient and uncontrolled coal combustion in households, we find that allocating currently available SNG to the residential sector provides the largest air quality and health benefits and smallest climate penalties compared with allocation to the power or industrial sectors.
IIASA DARE arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1703167114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1703167114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu