- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Piotr Sekula; Zbigniew Ustrnul; Anita Bokwa; Bogdan Bochenek; Miroslaw Zimnoch;doi: 10.3390/su14063388
This study presents the assessment of the quantitative influence of atmospheric circulation on the pollutant concentration in the area of Kraków, Southern Poland, for the period 2000–2020. The research has been realized with the application of different statistical parameters, synoptic meteorology tools, the Random Forests machine learning method, and multilinear regression analyses. Another aim of the research was to evaluate the types of atmospheric circulation classification methods used in studies on air pollution dispersion and to assess the possibility of their application in air quality management, including short-term PM10 daily forecasts. During the period analyzed, a significant decreasing trend of pollutants’ concentrations and varying atmospheric circulation conditions was observed. To understand the relation between PM10 concentration and meteorological conditions and their significance, the Random Forests algorithm was applied. Observations from meteorological stations, air quality measurements and ERA-5 reanalysis were used. The meteorological database was used as an input to models that were trained to predict daily PM10 concentration and its day-to-day changes. This study made it possible to distinguish the dominant circulation types with the highest probability of occurrence of poor air quality or a significant improvement in air quality conditions. Apart from the parameters whose significant influence on air quality is well established (air temperature and wind speed at the ground and air temperature gradient), the key factor was also the gradient of relative air humidity and wind shear in the lowest troposphere. Partial dependence calculated with the use of the Random Forests model made it possible to better analyze the impact of individual meteorological parameters on the PM10 daily concentration. The analysis has shown that, for areas with a diversified topography, it is crucial to use the variability of the atmospheric circulation during the day to better forecast air quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 07 Oct 2021 United Kingdom, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | ERA-PLANET, SNSF | Source apportionment usin..., SNSF | Influence of Intra-Partic...EC| ERA-PLANET ,SNSF| Source apportionment using long-term Aerosol Mass Spectrometry and Aethalometer Measurements (SAMSAM) ,SNSF| Influence of Intra-Particle Reactions on Secondary Organic Aerosol Health Effects and Optical Properties (IPR-SHOP)A. K. Tobler; A. K. Tobler; A. Skiba; F. Canonaco; G. Močnik; G. Močnik; P. Rai; G. Chen; J. Bartyzel; M. Zimnoch; K. Styszko; J. Nęcki; M. Furger; K. Różański; U. Baltensperger; J. G. Slowik; A. S. H. Prevot;handle: 10044/1/99917
Abstract. Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jakub Bartyzel; Damian Zięba; Jarosław Nęcki; Mirosław Zimnoch;doi: 10.3390/su12145600
The concentration of indoor suspended particulate matter is considered to be one of the main factors that affect health and quality of life. In Poland, in response to the pressure of public opinion, a few thousand air purifiers have been installed in public buildings where children spend time. However, another factor that also impacts upon the quality of indoor air, namely increased CO2 mixing ratios, is frequently overlooked. The only way to remove CO2 excess from interiors is through intensive ventilation. This is often an action at odds with the need to maintain low concentrations of particulate matter in indoor air. Two methods are presented to assess the rate of air exchange using CO2 or particulate matter as a tracer. One of the methods using indoor/outdoor PM (particulate matter) concentrations is based on the use of box models for analysis. The second one uses indoor CO2 concentration change analysis. At the tested locations, they showed large deviations of the determined values of the air exchange coefficients from its limits. Both methods showed consistent ventilation parameters estimation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Miroslaw Zimnoch; Lucyna Samek; Leszek Furman; Katarzyna Styszko; Alicja Skiba; Zbigniew Gorczyca; Michal Galkowski; Kazimierz Rozanski; Ewa Konduracka;doi: 10.3390/su12145777
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Tadeusz Kuc; Kazimierz Rozanski; Jaroslaw Necki; A. Korus; Miroslaw Zimnoch;Abstract Regular observations of atmospheric mixing-ratios of carbon dioxide and methane in the urban atmosphere, combined with analyses of their carbon-isotope composition (δ13C, δ14C), provide a powerful tool for assessing both the source strength and source partitioning of those gases, as well as their changes with respect to time. Intense surface fluxes of CO2 and CH4, associated with anthropogenic activities result in elevated levels of these gases in the local atmosphere as well as in modifications of their carbon-isotope compositions. Regular measurements of concentration and carbon-isotope composition of atmospheric CO2, carried out in Krakow over the past two decades, were extended to the period 1995–2000 and also to atmospheric mixing-ratios of CH4 and its carbon-isotope composition. Radiocarbon concentrations (δ14C) in atmospheric CO2 recorded at Krakow are systematically lower than the regional background levels. This effect stems from the addition of 14C-free CO2 into the local atmosphere, originating from the burning of fossil fuels. The fossil-fuel component in the local budget of atmospheric carbon calculated using a three-component mixing model decreased from ca. 27.5 ppm in 1989 to ca. 10 ppm in 1994. The seasonal fluctuations of this component (winter–summer) are of similar magnitude. A gradually decreasing difference between the 14CO2 content in the local atmosphere and the regional background observed after 1991 is attributed to the reduced consumption of 14C-free fuels, mostly coal, in southern Poland and the Krakow municipal area. The linear regression of δ13C values of methane plotted versus reciprocal concentration, performed for the data available for Krakow sampling site, yields the average δ13C signature of the local source of methane as being equal to −54.2‰. This value agrees very well with the measured isotope signature of natural gas being used in Krakow (−54.4±0.6‰) and points to leakages in the distribution network of this gas as the main anthropogenic source of CH4 in the local atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00032-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00032-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Piotr Sekula; Zbigniew Ustrnul; Anita Bokwa; Bogdan Bochenek; Miroslaw Zimnoch;doi: 10.3390/su14063388
This study presents the assessment of the quantitative influence of atmospheric circulation on the pollutant concentration in the area of Kraków, Southern Poland, for the period 2000–2020. The research has been realized with the application of different statistical parameters, synoptic meteorology tools, the Random Forests machine learning method, and multilinear regression analyses. Another aim of the research was to evaluate the types of atmospheric circulation classification methods used in studies on air pollution dispersion and to assess the possibility of their application in air quality management, including short-term PM10 daily forecasts. During the period analyzed, a significant decreasing trend of pollutants’ concentrations and varying atmospheric circulation conditions was observed. To understand the relation between PM10 concentration and meteorological conditions and their significance, the Random Forests algorithm was applied. Observations from meteorological stations, air quality measurements and ERA-5 reanalysis were used. The meteorological database was used as an input to models that were trained to predict daily PM10 concentration and its day-to-day changes. This study made it possible to distinguish the dominant circulation types with the highest probability of occurrence of poor air quality or a significant improvement in air quality conditions. Apart from the parameters whose significant influence on air quality is well established (air temperature and wind speed at the ground and air temperature gradient), the key factor was also the gradient of relative air humidity and wind shear in the lowest troposphere. Partial dependence calculated with the use of the Random Forests model made it possible to better analyze the impact of individual meteorological parameters on the PM10 daily concentration. The analysis has shown that, for areas with a diversified topography, it is crucial to use the variability of the atmospheric circulation during the day to better forecast air quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 07 Oct 2021 United Kingdom, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | ERA-PLANET, SNSF | Source apportionment usin..., SNSF | Influence of Intra-Partic...EC| ERA-PLANET ,SNSF| Source apportionment using long-term Aerosol Mass Spectrometry and Aethalometer Measurements (SAMSAM) ,SNSF| Influence of Intra-Particle Reactions on Secondary Organic Aerosol Health Effects and Optical Properties (IPR-SHOP)A. K. Tobler; A. K. Tobler; A. Skiba; F. Canonaco; G. Močnik; G. Močnik; P. Rai; G. Chen; J. Bartyzel; M. Zimnoch; K. Styszko; J. Nęcki; M. Furger; K. Różański; U. Baltensperger; J. G. Slowik; A. S. H. Prevot;handle: 10044/1/99917
Abstract. Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jakub Bartyzel; Damian Zięba; Jarosław Nęcki; Mirosław Zimnoch;doi: 10.3390/su12145600
The concentration of indoor suspended particulate matter is considered to be one of the main factors that affect health and quality of life. In Poland, in response to the pressure of public opinion, a few thousand air purifiers have been installed in public buildings where children spend time. However, another factor that also impacts upon the quality of indoor air, namely increased CO2 mixing ratios, is frequently overlooked. The only way to remove CO2 excess from interiors is through intensive ventilation. This is often an action at odds with the need to maintain low concentrations of particulate matter in indoor air. Two methods are presented to assess the rate of air exchange using CO2 or particulate matter as a tracer. One of the methods using indoor/outdoor PM (particulate matter) concentrations is based on the use of box models for analysis. The second one uses indoor CO2 concentration change analysis. At the tested locations, they showed large deviations of the determined values of the air exchange coefficients from its limits. Both methods showed consistent ventilation parameters estimation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Miroslaw Zimnoch; Lucyna Samek; Leszek Furman; Katarzyna Styszko; Alicja Skiba; Zbigniew Gorczyca; Michal Galkowski; Kazimierz Rozanski; Ewa Konduracka;doi: 10.3390/su12145777
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Tadeusz Kuc; Kazimierz Rozanski; Jaroslaw Necki; A. Korus; Miroslaw Zimnoch;Abstract Regular observations of atmospheric mixing-ratios of carbon dioxide and methane in the urban atmosphere, combined with analyses of their carbon-isotope composition (δ13C, δ14C), provide a powerful tool for assessing both the source strength and source partitioning of those gases, as well as their changes with respect to time. Intense surface fluxes of CO2 and CH4, associated with anthropogenic activities result in elevated levels of these gases in the local atmosphere as well as in modifications of their carbon-isotope compositions. Regular measurements of concentration and carbon-isotope composition of atmospheric CO2, carried out in Krakow over the past two decades, were extended to the period 1995–2000 and also to atmospheric mixing-ratios of CH4 and its carbon-isotope composition. Radiocarbon concentrations (δ14C) in atmospheric CO2 recorded at Krakow are systematically lower than the regional background levels. This effect stems from the addition of 14C-free CO2 into the local atmosphere, originating from the burning of fossil fuels. The fossil-fuel component in the local budget of atmospheric carbon calculated using a three-component mixing model decreased from ca. 27.5 ppm in 1989 to ca. 10 ppm in 1994. The seasonal fluctuations of this component (winter–summer) are of similar magnitude. A gradually decreasing difference between the 14CO2 content in the local atmosphere and the regional background observed after 1991 is attributed to the reduced consumption of 14C-free fuels, mostly coal, in southern Poland and the Krakow municipal area. The linear regression of δ13C values of methane plotted versus reciprocal concentration, performed for the data available for Krakow sampling site, yields the average δ13C signature of the local source of methane as being equal to −54.2‰. This value agrees very well with the measured isotope signature of natural gas being used in Krakow (−54.4±0.6‰) and points to leakages in the distribution network of this gas as the main anthropogenic source of CH4 in the local atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00032-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00032-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu