Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
22 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dipak A. Jadhav; Sumat C. Jain; Makarand M. Ghangrekar;

    Abstract Treatment of cow's urine was first time explored in clayware microbial fuel cell (MFC) by varying dilution to have different chemical oxygen demand (COD) in the feed. Improvement in power output of MFC was attained with increase in feed concentration from 1.5 to 3 kg COD/m 3 ; however further increase in influent COD up to 30 kg COD/m 3 decreased the power. Maximum power of 5.23 W/m 3 was attained in MFC fed with diluted urine of cow with COD concentration of 3 kg COD/m 3 , which was seven-fold higher than MFC fed with raw urine. Nitrate removal of 77± 4.1% and carbohydrate removal of 80± 3.9% were achieved in MFC fed with 3 kg COD/m 3 . Electrochemical analysis showed that electrogenic activity of anodic biofilm boosted at optimum feed concentration (3 kg COD/m 3 ) of cow's urine in anodic chamber. Using two MFCs, fed with diluted cow's urine, maximum voltage of 1.36 ± 0.05 V in series connection and maximum current of 48 A/m 3 in parallel connection were achieved. Thus, cow's urine can serve as sustainable yellow gold to harvest bioelectricity using low cost clayware MFC, and to curb the water pollution likely caused from cattle sheds.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    48
    citations48
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sultan Alam; Muhammad Sufaid Khan; Ali Umar; Rozina Khattak; +9 Authors

    Les nanoparticules de Pd–Ni supportées sur charbon actif (Pd–Ni/AC) ont été préparées en utilisant une méthode de transfert de phase. Le but de la synthèse de composites ternaires était d'améliorer la surface des nanoparticules de Pd–Ni synthétisées, car elles ont une faible surface. Le composite résultant a été caractérisé par microscopie électronique à balayage (MEB), diffraction des rayons X (DRX) et spectroscopie aux rayons X à dispersion d'énergie (EDX) pour étudier sa morphologie de surface, la taille des particules, le pourcentage de cristallinité et la composition élémentaire, respectivement. Les données XRD et l'analyse EDX ont révélé la présence d'alliages Pd–Ni imprégnés sur le CA. Le Pd–Ni/AC a été utilisé comme adsorbant pour l'élimination du colorant azoïque bleu basique 3 d'un milieu aqueux. Des modèles cinétiques et isothermes ont été utilisés pour calculer les paramètres d'adsorption. Le modèle cinétique le plus approprié parmi les modèles appliqués était le modèle de pseudo second ordre, confirmant les caractéristiques de chimisorption du processus, et le modèle d'isotherme le plus approprié était le modèle de Langmuir, avec une capacité d'adsorption maximale de 333 mg/g à 333 K. Différents paramètres expérimentaux, tels que la dose d'adsorbant, le pH, la température et le temps de contact, ont été optimisés. Les paramètres optimaux atteints étaient : un pH de 12, une température de 333 K, une dose d'adsorbant de 0,01 g et un temps de contact optimal de 30 min. De plus, les paramètres thermodynamiques d'adsorption, tels que l'énergie libre de Gibbs (ΔG°), l'enthalpie (ΔH°) et l'entropie (ΔS°), ont montré que les processus d'adsorption étaient exothermiques avec des valeurs de ΔH° égales à − 6,206 kJ/mol et spontanés avec des valeurs de ΔG° de − 13,297, − 13,780 et −14,264 kJ/mol, respectivement à 293, 313 et 333 K. Une augmentation du changement d'entropie (ΔS°) avec une valeur de 0,0242 kJ/mol K, a indiqué le trouble amélioré à une interface solide-solution pendant le processus d'adsorption. Le recyclage de l'adsorbant pendant six cycles avec de l'hydroxyde de sodium et de l'éthanol a montré une baisse de l'efficacité du colorant azoïque sélectionné bleu basique 3 jusqu'à 79 %. Le composite ternaire préparé s'est avéré efficace dans l'élimination du colorant sélectionné. L'élimination d'autres polluants représente l'une des utilisations futures possibles de l'adsorbant préparé, mais d'autres expériences sont nécessaires. Las nanopartículas de Pd–Ni soportadas en carbón activado (Pd–Ni/AC) se prepararon utilizando un método de transferencia de fase. El propósito de sintetizar compuestos ternarios fue mejorar el área de superficie de las nanopartículas de Pd–Ni sintetizadas, ya que tienen un área de superficie baja. El compuesto resultante se caracterizó por microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) y espectroscopía de rayos X de dispersión de energía (edX) para investigar su morfología superficial, tamaño de partícula, porcentaje de cristalinidad y composición elemental, respectivamente. Los datos de XRD y el análisis de edX revelaron la presencia de aleaciones de Pd–Ni impregnadas en el AC. Se utilizó Pd–Ni/AC como adsorbente para la eliminación del colorante azoico azul básico 3 de un medio acuoso. Se utilizaron modelos cinéticos e isotermos para calcular los parámetros de adsorción. El modelo cinético más adecuado entre los modelos aplicados fue el modelo de pseudo-segundo orden, que confirma las características de quimisorción del proceso, y el modelo isotermo más adecuado fue el modelo de Langmuir, con una capacidad de adsorción máxima de 333 mg/g a 333 K. Se optimizaron diferentes parámetros experimentales, como la dosis de adsorbente, el pH, la temperatura y el tiempo de contacto. Los parámetros óptimos alcanzados fueron: un pH de 12, temperatura de 333 K, dosis de adsorbente de 0.01 g y tiempo de contacto óptimo de 30 min. Además, los parámetros termodinámicos de adsorción, como la energía libre de Gibbs (ΔG°), la entalpía (ΔH°) y la entropía (ΔS°), mostraron que los procesos de adsorción son exotérmicos con valores de ΔH° iguales a -6.206 kJ/mol y espontáneos con valores de ΔG° de -13.297, -13.780 y -14.264 kJ/mol, respectivamente, a 293, 313 y 333 K. Un aumento en el cambio de entropía (ΔS°) con un valor de 0.0242 kJ/mol K, indicó el desorden mejorado en una interfaz de solución sólida durante el proceso de adsorción. El reciclaje del adsorbente durante seis ciclos con hidróxido de sodio y etanol mostró una disminución en la eficiencia del colorante azoico seleccionado azul básico 3 hasta un 79%. El material compuesto ternario preparado se encontró eficaz en la eliminación del colorante seleccionado. La eliminación de otros contaminantes representa uno de los posibles usos futuros del adsorbente preparado, pero se requieren más experimentos. Pd–Ni nanoparticles supported on activated carbon (Pd–Ni/AC) were prepared using a phase transfer method. The purpose of synthesizing ternary composites was to enhance the surface area of synthesized Pd–Ni nanoparticles, as they have a low surface area. The resulting composite was characterized by scanning electronic microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) for investigating its surface morphology, particle size, percentage of crystallinity and elemental composition, respectively. The XRD data and EDX analysis revealed the presence of Pd–Ni alloys impregnated on the AC. Pd–Ni/AC was used as an adsorbent for the removal of the azo dye basic blue 3 from an aqueous medium. Kinetic and isotherm models were used to calculate the adsorption parameters. The most suitable kinetic model amongst the applied models was the pseudo-second-order model, confirming the chemisorption characteristics of the process, and the most suitable isotherm model was the Langmuir model, with a maximum adsorption capacity of 333 mg/g at 333 K. Different experimental parameters, such as the adsorbent dosage, pH, temperature and contact time, were optimized. The optimum parameters reached were: a pH of 12, temperature of 333 K, adsorbent dosage of 0.01 g and optimum contact time of 30 min. Moreover, the thermodynamics parameters of adsorption, such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), showed the adsorption processes being exothermic with values of ΔH° equal to −6.206 kJ/mol and being spontaneous with ΔG° values of −13.297, −13.780 and −14.264 kJ/mol, respectively at 293, 313 and 333 K. An increase in entropy change (ΔS°) with a value of 0.0242 kJ/mol K, indicated the enhanced disorder at a solid–solution interface during the adsorption process. Recycling the adsorbent for six cycles with sodium hydroxide and ethanol showed a decline in the efficiency of the selected azo dye basic blue 3 up to 79%. The prepared ternary composite was found effective in the removal of the selected dye. The removal of other pollutants represents one of the possible future uses of the prepared adsorbent, but further experiments are required. تم تحضير جسيمات Pd - Ni النانوية المدعومة بالكربون المنشط (Pd - Ni/AC) باستخدام طريقة نقل الطور. كان الغرض من تصنيع المركبات الثلاثية هو تعزيز مساحة سطح جسيمات Pd - Ni النانوية المركبة، حيث أن مساحة سطحها منخفضة. تميزت المادة المركبة الناتجة بمسح المجهر الإلكتروني (SEM)، حيود الأشعة السينية (XRD) ومطيافية الأشعة السينية المشتتة للطاقة (EDX) لفحص التشكل السطحي، وحجم الجسيمات، والنسبة المئوية للتبلور والتكوين العنصري، على التوالي. كشفت بيانات XRD وتحليل EDX عن وجود سبائك Pd - Ni المشربة على AC. تم استخدام Pd - Ni/AC كممتز لإزالة صبغة الآزو الزرقاء الأساسية 3 من وسط مائي. تم استخدام النماذج الحركية ومتساوية الحرارة لحساب معلمات الامتزاز. كان النموذج الحركي الأكثر ملاءمة بين النماذج المطبقة هو النموذج الزائف من الدرجة الثانية، مما يؤكد خصائص الامتزاز الكيميائي للعملية، وكان نموذج التساوي الحراري الأكثر ملاءمة هو نموذج Langmuir، بسعة امتزاز قصوى تبلغ 333 مجم/جم عند 333 كلفن. تم تحسين المعلمات التجريبية المختلفة، مثل الجرعة الممتزة، ودرجة الحموضة، ودرجة الحرارة وزمن التلامس. كانت المعلمات المثلى التي تم التوصل إليها هي: درجة الحموضة 12، ودرجة الحرارة 333 كلفن، والجرعة الممتزة 0.01 جم ووقت التلامس الأمثل 30 دقيقة. علاوة على ذلك، أظهرت معلمات الديناميكا الحرارية للامتزاز، مثل طاقة جيبس الحرة (ΔG°)، والمحتوى الحراري (ΔH°) والإنتروبيا (ΔS°)، أن عمليات الامتزاز طاردة للحرارة بقيم ΔH° تساوي − 6.206 كيلو جول/مول وتكون عفوية بقيم ΔG° من − 13.297 و − 13.780 و − 14.264 كيلو جول/مول، على التوالي عند 293 و 313 و 333 كلفن. أشارت الزيادة في تغير الإنتروبيا (ΔS°) بقيمة 0.0242 كيلو جول/مول ك، إلى الاضطراب المعزز عند واجهة محلول صلب أثناء عملية الامتزاز. أظهرت إعادة تدوير المادة الممتزة لمدة ست دورات مع هيدروكسيد الصوديوم والإيثانول انخفاضًا في كفاءة صبغة الآزو المختارة الزرقاء الأساسية 3 بنسبة تصل إلى 79 ٪. تم العثور على المادة المركبة الثلاثية المحضرة فعالة في إزالة الصبغة المختارة. تمثل إزالة الملوثات الأخرى أحد الاستخدامات المستقبلية المحتملة للمادة الممتزة المحضرة، ولكن هناك حاجة إلى مزيد من التجارب.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Swati Das; Akash Tripathi; Makarand M. Ghangrekar;

    A microbial fuel cell (MFC) is a cutting-edge bioelectrochemical technology, which demonstrates power and other valuables recovery while treating wastewater by cultivating electroactive microbes. However, rampant biofilm growth over the cathode surface of air cathode MFC exacerbates the oxidation-reduction reaction rate, triggering a dip in the overall performance of MFC. In this sense, biosynthesized silver nanoparticles (AgNPs) have garnered a plethora of potential applications as cathode catalysts as well as anti-biofouling agent for MFCs without harming nature. The MFC equipped with the mixture of aloe vera and algae (@5 mg/cm2) synthesized AgNPs on cathode generated a maximum power density of 66.5 mW/m2 and chemical oxygen demand removal efficiency of 85.2%, which was ca. 5.6 times and 1.2 times higher compared to control MFC operated without any catalyst on cathode. Thus, this investigation paves the way for using eco-amiable, low-cost bioderived organic compounds to assist MFC in achieving high power output and other valuables with minimal reliance on chemicals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Swati Das; Sovik Das; M.M. Ghangrekar;

    Quorum-sensing molecules (QSMs) extracted from anaerobic sludge can help to enhance the overall productivity of algal culture, thus diminishing the per unit production cost of algae based-biofuel. In this investigation, QSMs extracted from anaerobic bacterial sludge of microbial fuel cell (MFC) was used to enhance the overall productivity of Chlorella sorokiniana cultivated in a separate bubble column photobioreactor. With the dosage of QSMs, algal biomass productivity and lipid content were increased by 2.25 times and 1.28 times, respectively. Further, lipid extracted biomass of quorum-sensing induced algae (LEB-QSA) was applied in anodic chamber of MFC to function as substrate and mediator, which enhanced the coulombic efficiency of this MFC by 74% as compared to the control MFC operated without LEB-QSA. Thus, this exploration demonstrated successful improvement in the macromolecular properties of algal culture dosed with QSMs and improved performance of MFC with the application of LEB-QSA as mediator and substrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    94
    citations94
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Srishti Mishra; Anil Dhanda; Brajesh K. Dubey; Makarand M. Ghangrekar;

    Microbial desalination cells (MDCs) are considered as a sustainable technology for water desalination, wastewater treatment, and power generation. However, this neoteric technology suffers from different challenges, including sluggish oxygen reduction reaction and poor electron transfer from microbes to electrodes, ultimately leading to less power generation and desalination efficiency. This review delves into the intricate roles of both abiotic and biocatalysts in enhancing performance of MDCs through ion removal and charge transfer mechanisms. Detailed discussions highlight the comparative advantages and limitations of different catalyst types and insights into electrode modifications to optimise catalytic activity and biofilm formation. Further, recent advancements in electrode engineering, including surface coatings and integration of nanomaterial, geared towards enhancing efficiency of MDC and performance stability are discussed. Finally, future recommendations are provided, focusing on innovative catalyst designs, material integration, and considerations for scale-up and commercialisation, thereby offering a comprehensive roadmap for the continued advancement of MDC.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Salma Jabeen; Muhammad Sufaid Khan; Rozina Khattak; Ivar Zekker; +6 Authors

    L'activité catalytique de Pd/ZrO2 a été étudiée en termes de dégradation du colorant rhodamine-B en présence de peroxyde d'hydrogène. Le Pd/ZrO2 a été préparé par imprégnation, calciné à 750 °C et caractérisé par DRX, MEB et EDX. Le catalyseur a montré une bonne activité catalytique pour la dégradation des colorants à 333 K, en utilisant 0,05 g du catalyseur pendant 5 h. La cinétique de réaction suivait la cinétique du pseudo premier ordre. Les isothermes de Freundlich, Langmuir et Temkin ont été appliquées aux données et le meilleur ajustement a été obtenu avec l'isotherme de Freundlich. Des paramètres thermodynamiques, tels que ΔH, ΔG et ΔS ont également été calculés. Les valeurs négatives de ΔH (− 291,406KJ/mol) et de l'énergie libre de Gibbs (ΔG) ont montré la nature exothermique et spontanée du processus. La valeur ΔS positive (0,04832 KJ/mol K) a montré une affinité appropriée du catalyseur pour la dégradation des colorants. Le catalyseur était très stable, actif et était facilement séparé du mélange réactionnel par filtration. On peut conclure des résultats que le catalyseur préparé pourrait être utilisé efficacement dans la dégradation/élimination des colorants de l'eau soumise à une validation et une utilisation ultérieures pour divers colorants. La actividad catalítica de Pd/ZrO2 se estudió en términos de la degradación del colorante rodamina-B en presencia de peróxido de hidrógeno. El Pd/ZrO2 se preparó mediante el método de impregnación, se calcinó a 750 °C y se caracterizó mediante XRD, SEM y edX. El catalizador mostró una buena actividad catalítica para la degradación del colorante a 333 K, usando 0.05 g del catalizador durante 5 h. La cinética de reacción siguió la cinética de pseudo-primer orden. Se aplicaron las isotermas de Freundlich, Langmuir y Temkin a los datos y se obtuvo el mejor ajuste con la isoterma de Freundlich. También se calcularon parámetros termodinámicos, como ΔH, ΔG y ΔS. Los valores negativos de ΔH (-291,406KJ/mol) y la energía libre de Gibbs (ΔG) mostraron la naturaleza exotérmica y espontánea del proceso. El valor positivo de ΔS (0.04832 KJ/mol K) mostró una afinidad adecuada del catalizador para la degradación del colorante. El catalizador era muy estable, activo y se separó fácilmente de la mezcla de reacción por filtración. Se puede concluir a partir de los resultados que el catalizador preparado podría usarse eficazmente en la degradación/eliminación de colorantes del agua sometida a validación y uso adicionales para diversos colorantes. The catalytic activity of Pd/ZrO2 was studied in terms of the degradation of rhodamine-B dye in the presence of hydrogen peroxide. Pd/ZrO2 was prepared by impregnation method, calcined at 750 °C and characterized by XRD, SEM and EDX. The catalyst showed good catalytic activity for dye degradation at 333 K, using 0.05 g of the catalyst during 5 h. The reaction kinetics followed the pseudo-first order kinetics. The Freundlich, Langmuir and Temkin isotherms were applied to the data and the best fit was obtained with Freundlich isotherm. Thermodynamic parameters, like ΔH, ΔG and ΔS were also calculated. The negative values of ΔH (−291.406 KJ/mol) and Gibbs free energy (ΔG) showed the exothermic and spontaneous nature of the process. The positive ΔS (0.04832 KJ/mol K) value showed suitable affinity of catalyst for dye degradation. The catalyst was very stable, active and was easily separated from the reaction mixture by filtration. It can be concluded from the results that the prepared catalyst could be effectively used in dyes degradation/removal from water subjected to further validation and use for various dyes. تمت دراسة النشاط الحفاز لـ Pd/ZrO2 من حيث تحلل صبغة الرودامين- B في وجود بيروكسيد الهيدروجين. تم تحضير Pd/ZrO2 بطريقة التشريب، وتم تحميصه عند 750 درجة مئوية وتميزه بـ XRD و SEM و EDX. أظهر المحفز نشاطًا حفزيًا جيدًا لتحلل الصبغة عند 333 كلفن، باستخدام 0.05 جم من المحفز خلال 5 ساعات. اتبعت حركية التفاعل حركية الدرجة الأولى الزائفة. تم تطبيق متساوي الحرارة Freundlich و Langmuir و Temkin على البيانات وتم الحصول على أفضل ملاءمة مع متساوي الحرارة Freundlich. كما تم حساب المتغيرات الديناميكية الحرارية، مثل ΔH و ΔG و ΔS. أظهرت القيم السالبة لـ ΔH (-291.406 كيلوجول/مول) وطاقة جيبس الحرة (ΔG) الطبيعة الطاردة للحرارة والعفوية للعملية. أظهرت قيمة ΔS الموجبة (0.04832 KJ/mol K) تقاربًا مناسبًا للمحفز لتحلل الصبغة. كان المحفز مستقرًا ونشطًا للغاية وتم فصله بسهولة عن خليط التفاعل عن طريق الترشيح. يمكن الاستنتاج من النتائج أنه يمكن استخدام المحفز المحضر بشكل فعال في تحلل/إزالة الأصباغ من الماء الخاضع لمزيد من التحقق والاستخدام للأصباغ المختلفة.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Akash Tripathi; Santosh kumar; G.S. Jadhav; Dipak A. Jadhav; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Indrajit Chakraborty; S.M. Sathe; C.N. Khuman; M.M. Ghangrekar;

    This review emphasizes the applicability of bioelectrochemical systems for the treatment of wastewaters contaminated with xenobiotic compounds. Treatment options for dyes, antibiotics, aromatics and chlorinated compounds are reviewed in this article. Two major variants of bioelectrochemical systems, namely microbial fuel cell (MFC) and microbial electrolysis cell (MEC), are discussed in light of xenobiotics removal. The efficiency of each system in terms of pollutant removal and power recovered/utilised is discussed and degradation mechanisms for these biorefractory compounds are described. This review also discusses the removal and recovery of heavy metals through biocatalytic and electrochemical reduction in the cathodic chamber of MFC and MEC. Further, the future scope of research is also elaborated in light of different issues pertaining to the replicability and scalability of the system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials Science fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials Science for Energy Technologies
    Article . 2020 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials Science for Energy Technologies
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    59
    citations59
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials Science fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials Science for Energy Technologies
      Article . 2020 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials Science for Energy Technologies
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Manikanta M. Doki; Arun Kumar Mehta; Debkumar Chakraborty; Makarand M. Ghangrekar; +5 Authors

    Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m3 pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass. Fermented sewage with synthetic media consisting of sodium acetate and propionic acids at a surface-to-volume (S/V) ratio of 10 m2/m3 removed 89%, 93%, and 81% of chemical oxygen demand, ammonium nitrogen, and orthophosphate, respectively; whereas respective removal in fermented sewage alone without synthetic media was 73%, 73%, and 72% during batch operation of 120 h. The biomass yield of 0.88-0.95 g CODbiomass /g CODremoved with protein content of 40.3 ± 0.3%-43.9 ± 0.2% w/w was obtained for fermented sewage with synthetic media. The results revealed enhanced possibility of scaling-up the raceway reactor to recover resources from municipal wastewater and enable simultaneous high-rate PNSB single-cell protein production.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. Tholia; B. Neethu; G. D. Bhowmick; M. M. Ghangrekar;

    Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Biochemistry...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Biochemistry and Biotechnology
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Biochemistry...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Biochemistry and Biotechnology
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
22 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dipak A. Jadhav; Sumat C. Jain; Makarand M. Ghangrekar;

    Abstract Treatment of cow's urine was first time explored in clayware microbial fuel cell (MFC) by varying dilution to have different chemical oxygen demand (COD) in the feed. Improvement in power output of MFC was attained with increase in feed concentration from 1.5 to 3 kg COD/m 3 ; however further increase in influent COD up to 30 kg COD/m 3 decreased the power. Maximum power of 5.23 W/m 3 was attained in MFC fed with diluted urine of cow with COD concentration of 3 kg COD/m 3 , which was seven-fold higher than MFC fed with raw urine. Nitrate removal of 77± 4.1% and carbohydrate removal of 80± 3.9% were achieved in MFC fed with 3 kg COD/m 3 . Electrochemical analysis showed that electrogenic activity of anodic biofilm boosted at optimum feed concentration (3 kg COD/m 3 ) of cow's urine in anodic chamber. Using two MFCs, fed with diluted cow's urine, maximum voltage of 1.36 ± 0.05 V in series connection and maximum current of 48 A/m 3 in parallel connection were achieved. Thus, cow's urine can serve as sustainable yellow gold to harvest bioelectricity using low cost clayware MFC, and to curb the water pollution likely caused from cattle sheds.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    48
    citations48
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sultan Alam; Muhammad Sufaid Khan; Ali Umar; Rozina Khattak; +9 Authors

    Les nanoparticules de Pd–Ni supportées sur charbon actif (Pd–Ni/AC) ont été préparées en utilisant une méthode de transfert de phase. Le but de la synthèse de composites ternaires était d'améliorer la surface des nanoparticules de Pd–Ni synthétisées, car elles ont une faible surface. Le composite résultant a été caractérisé par microscopie électronique à balayage (MEB), diffraction des rayons X (DRX) et spectroscopie aux rayons X à dispersion d'énergie (EDX) pour étudier sa morphologie de surface, la taille des particules, le pourcentage de cristallinité et la composition élémentaire, respectivement. Les données XRD et l'analyse EDX ont révélé la présence d'alliages Pd–Ni imprégnés sur le CA. Le Pd–Ni/AC a été utilisé comme adsorbant pour l'élimination du colorant azoïque bleu basique 3 d'un milieu aqueux. Des modèles cinétiques et isothermes ont été utilisés pour calculer les paramètres d'adsorption. Le modèle cinétique le plus approprié parmi les modèles appliqués était le modèle de pseudo second ordre, confirmant les caractéristiques de chimisorption du processus, et le modèle d'isotherme le plus approprié était le modèle de Langmuir, avec une capacité d'adsorption maximale de 333 mg/g à 333 K. Différents paramètres expérimentaux, tels que la dose d'adsorbant, le pH, la température et le temps de contact, ont été optimisés. Les paramètres optimaux atteints étaient : un pH de 12, une température de 333 K, une dose d'adsorbant de 0,01 g et un temps de contact optimal de 30 min. De plus, les paramètres thermodynamiques d'adsorption, tels que l'énergie libre de Gibbs (ΔG°), l'enthalpie (ΔH°) et l'entropie (ΔS°), ont montré que les processus d'adsorption étaient exothermiques avec des valeurs de ΔH° égales à − 6,206 kJ/mol et spontanés avec des valeurs de ΔG° de − 13,297, − 13,780 et −14,264 kJ/mol, respectivement à 293, 313 et 333 K. Une augmentation du changement d'entropie (ΔS°) avec une valeur de 0,0242 kJ/mol K, a indiqué le trouble amélioré à une interface solide-solution pendant le processus d'adsorption. Le recyclage de l'adsorbant pendant six cycles avec de l'hydroxyde de sodium et de l'éthanol a montré une baisse de l'efficacité du colorant azoïque sélectionné bleu basique 3 jusqu'à 79 %. Le composite ternaire préparé s'est avéré efficace dans l'élimination du colorant sélectionné. L'élimination d'autres polluants représente l'une des utilisations futures possibles de l'adsorbant préparé, mais d'autres expériences sont nécessaires. Las nanopartículas de Pd–Ni soportadas en carbón activado (Pd–Ni/AC) se prepararon utilizando un método de transferencia de fase. El propósito de sintetizar compuestos ternarios fue mejorar el área de superficie de las nanopartículas de Pd–Ni sintetizadas, ya que tienen un área de superficie baja. El compuesto resultante se caracterizó por microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) y espectroscopía de rayos X de dispersión de energía (edX) para investigar su morfología superficial, tamaño de partícula, porcentaje de cristalinidad y composición elemental, respectivamente. Los datos de XRD y el análisis de edX revelaron la presencia de aleaciones de Pd–Ni impregnadas en el AC. Se utilizó Pd–Ni/AC como adsorbente para la eliminación del colorante azoico azul básico 3 de un medio acuoso. Se utilizaron modelos cinéticos e isotermos para calcular los parámetros de adsorción. El modelo cinético más adecuado entre los modelos aplicados fue el modelo de pseudo-segundo orden, que confirma las características de quimisorción del proceso, y el modelo isotermo más adecuado fue el modelo de Langmuir, con una capacidad de adsorción máxima de 333 mg/g a 333 K. Se optimizaron diferentes parámetros experimentales, como la dosis de adsorbente, el pH, la temperatura y el tiempo de contacto. Los parámetros óptimos alcanzados fueron: un pH de 12, temperatura de 333 K, dosis de adsorbente de 0.01 g y tiempo de contacto óptimo de 30 min. Además, los parámetros termodinámicos de adsorción, como la energía libre de Gibbs (ΔG°), la entalpía (ΔH°) y la entropía (ΔS°), mostraron que los procesos de adsorción son exotérmicos con valores de ΔH° iguales a -6.206 kJ/mol y espontáneos con valores de ΔG° de -13.297, -13.780 y -14.264 kJ/mol, respectivamente, a 293, 313 y 333 K. Un aumento en el cambio de entropía (ΔS°) con un valor de 0.0242 kJ/mol K, indicó el desorden mejorado en una interfaz de solución sólida durante el proceso de adsorción. El reciclaje del adsorbente durante seis ciclos con hidróxido de sodio y etanol mostró una disminución en la eficiencia del colorante azoico seleccionado azul básico 3 hasta un 79%. El material compuesto ternario preparado se encontró eficaz en la eliminación del colorante seleccionado. La eliminación de otros contaminantes representa uno de los posibles usos futuros del adsorbente preparado, pero se requieren más experimentos. Pd–Ni nanoparticles supported on activated carbon (Pd–Ni/AC) were prepared using a phase transfer method. The purpose of synthesizing ternary composites was to enhance the surface area of synthesized Pd–Ni nanoparticles, as they have a low surface area. The resulting composite was characterized by scanning electronic microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) for investigating its surface morphology, particle size, percentage of crystallinity and elemental composition, respectively. The XRD data and EDX analysis revealed the presence of Pd–Ni alloys impregnated on the AC. Pd–Ni/AC was used as an adsorbent for the removal of the azo dye basic blue 3 from an aqueous medium. Kinetic and isotherm models were used to calculate the adsorption parameters. The most suitable kinetic model amongst the applied models was the pseudo-second-order model, confirming the chemisorption characteristics of the process, and the most suitable isotherm model was the Langmuir model, with a maximum adsorption capacity of 333 mg/g at 333 K. Different experimental parameters, such as the adsorbent dosage, pH, temperature and contact time, were optimized. The optimum parameters reached were: a pH of 12, temperature of 333 K, adsorbent dosage of 0.01 g and optimum contact time of 30 min. Moreover, the thermodynamics parameters of adsorption, such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), showed the adsorption processes being exothermic with values of ΔH° equal to −6.206 kJ/mol and being spontaneous with ΔG° values of −13.297, −13.780 and −14.264 kJ/mol, respectively at 293, 313 and 333 K. An increase in entropy change (ΔS°) with a value of 0.0242 kJ/mol K, indicated the enhanced disorder at a solid–solution interface during the adsorption process. Recycling the adsorbent for six cycles with sodium hydroxide and ethanol showed a decline in the efficiency of the selected azo dye basic blue 3 up to 79%. The prepared ternary composite was found effective in the removal of the selected dye. The removal of other pollutants represents one of the possible future uses of the prepared adsorbent, but further experiments are required. تم تحضير جسيمات Pd - Ni النانوية المدعومة بالكربون المنشط (Pd - Ni/AC) باستخدام طريقة نقل الطور. كان الغرض من تصنيع المركبات الثلاثية هو تعزيز مساحة سطح جسيمات Pd - Ni النانوية المركبة، حيث أن مساحة سطحها منخفضة. تميزت المادة المركبة الناتجة بمسح المجهر الإلكتروني (SEM)، حيود الأشعة السينية (XRD) ومطيافية الأشعة السينية المشتتة للطاقة (EDX) لفحص التشكل السطحي، وحجم الجسيمات، والنسبة المئوية للتبلور والتكوين العنصري، على التوالي. كشفت بيانات XRD وتحليل EDX عن وجود سبائك Pd - Ni المشربة على AC. تم استخدام Pd - Ni/AC كممتز لإزالة صبغة الآزو الزرقاء الأساسية 3 من وسط مائي. تم استخدام النماذج الحركية ومتساوية الحرارة لحساب معلمات الامتزاز. كان النموذج الحركي الأكثر ملاءمة بين النماذج المطبقة هو النموذج الزائف من الدرجة الثانية، مما يؤكد خصائص الامتزاز الكيميائي للعملية، وكان نموذج التساوي الحراري الأكثر ملاءمة هو نموذج Langmuir، بسعة امتزاز قصوى تبلغ 333 مجم/جم عند 333 كلفن. تم تحسين المعلمات التجريبية المختلفة، مثل الجرعة الممتزة، ودرجة الحموضة، ودرجة الحرارة وزمن التلامس. كانت المعلمات المثلى التي تم التوصل إليها هي: درجة الحموضة 12، ودرجة الحرارة 333 كلفن، والجرعة الممتزة 0.01 جم ووقت التلامس الأمثل 30 دقيقة. علاوة على ذلك، أظهرت معلمات الديناميكا الحرارية للامتزاز، مثل طاقة جيبس الحرة (ΔG°)، والمحتوى الحراري (ΔH°) والإنتروبيا (ΔS°)، أن عمليات الامتزاز طاردة للحرارة بقيم ΔH° تساوي − 6.206 كيلو جول/مول وتكون عفوية بقيم ΔG° من − 13.297 و − 13.780 و − 14.264 كيلو جول/مول، على التوالي عند 293 و 313 و 333 كلفن. أشارت الزيادة في تغير الإنتروبيا (ΔS°) بقيمة 0.0242 كيلو جول/مول ك، إلى الاضطراب المعزز عند واجهة محلول صلب أثناء عملية الامتزاز. أظهرت إعادة تدوير المادة الممتزة لمدة ست دورات مع هيدروكسيد الصوديوم والإيثانول انخفاضًا في كفاءة صبغة الآزو المختارة الزرقاء الأساسية 3 بنسبة تصل إلى 79 ٪. تم العثور على المادة المركبة الثلاثية المحضرة فعالة في إزالة الصبغة المختارة. تمثل إزالة الملوثات الأخرى أحد الاستخدامات المستقبلية المحتملة للمادة الممتزة المحضرة، ولكن هناك حاجة إلى مزيد من التجارب.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Swati Das; Akash Tripathi; Makarand M. Ghangrekar;

    A microbial fuel cell (MFC) is a cutting-edge bioelectrochemical technology, which demonstrates power and other valuables recovery while treating wastewater by cultivating electroactive microbes. However, rampant biofilm growth over the cathode surface of air cathode MFC exacerbates the oxidation-reduction reaction rate, triggering a dip in the overall performance of MFC. In this sense, biosynthesized silver nanoparticles (AgNPs) have garnered a plethora of potential applications as cathode catalysts as well as anti-biofouling agent for MFCs without harming nature. The MFC equipped with the mixture of aloe vera and algae (@5 mg/cm2) synthesized AgNPs on cathode generated a maximum power density of 66.5 mW/m2 and chemical oxygen demand removal efficiency of 85.2%, which was ca. 5.6 times and 1.2 times higher compared to control MFC operated without any catalyst on cathode. Thus, this investigation paves the way for using eco-amiable, low-cost bioderived organic compounds to assist MFC in achieving high power output and other valuables with minimal reliance on chemicals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Swati Das; Sovik Das; M.M. Ghangrekar;

    Quorum-sensing molecules (QSMs) extracted from anaerobic sludge can help to enhance the overall productivity of algal culture, thus diminishing the per unit production cost of algae based-biofuel. In this investigation, QSMs extracted from anaerobic bacterial sludge of microbial fuel cell (MFC) was used to enhance the overall productivity of Chlorella sorokiniana cultivated in a separate bubble column photobioreactor. With the dosage of QSMs, algal biomass productivity and lipid content were increased by 2.25 times and 1.28 times, respectively. Further, lipid extracted biomass of quorum-sensing induced algae (LEB-QSA) was applied in anodic chamber of MFC to function as substrate and mediator, which enhanced the coulombic efficiency of this MFC by 74% as compared to the control MFC operated without LEB-QSA. Thus, this exploration demonstrated successful improvement in the macromolecular properties of algal culture dosed with QSMs and improved performance of MFC with the application of LEB-QSA as mediator and substrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    94
    citations94
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Srishti Mishra; Anil Dhanda; Brajesh K. Dubey; Makarand M. Ghangrekar;

    Microbial desalination cells (MDCs) are considered as a sustainable technology for water desalination, wastewater treatment, and power generation. However, this neoteric technology suffers from different challenges, including sluggish oxygen reduction reaction and poor electron transfer from microbes to electrodes, ultimately leading to less power generation and desalination efficiency. This review delves into the intricate roles of both abiotic and biocatalysts in enhancing performance of MDCs through ion removal and charge transfer mechanisms. Detailed discussions highlight the comparative advantages and limitations of different catalyst types and insights into electrode modifications to optimise catalytic activity and biofilm formation. Further, recent advancements in electrode engineering, including surface coatings and integration of nanomaterial, geared towards enhancing efficiency of MDC and performance stability are discussed. Finally, future recommendations are provided, focusing on innovative catalyst designs, material integration, and considerations for scale-up and commercialisation, thereby offering a comprehensive roadmap for the continued advancement of MDC.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Salma Jabeen; Muhammad Sufaid Khan; Rozina Khattak; Ivar Zekker; +6 Authors

    L'activité catalytique de Pd/ZrO2 a été étudiée en termes de dégradation du colorant rhodamine-B en présence de peroxyde d'hydrogène. Le Pd/ZrO2 a été préparé par imprégnation, calciné à 750 °C et caractérisé par DRX, MEB et EDX. Le catalyseur a montré une bonne activité catalytique pour la dégradation des colorants à 333 K, en utilisant 0,05 g du catalyseur pendant 5 h. La cinétique de réaction suivait la cinétique du pseudo premier ordre. Les isothermes de Freundlich, Langmuir et Temkin ont été appliquées aux données et le meilleur ajustement a été obtenu avec l'isotherme de Freundlich. Des paramètres thermodynamiques, tels que ΔH, ΔG et ΔS ont également été calculés. Les valeurs négatives de ΔH (− 291,406KJ/mol) et de l'énergie libre de Gibbs (ΔG) ont montré la nature exothermique et spontanée du processus. La valeur ΔS positive (0,04832 KJ/mol K) a montré une affinité appropriée du catalyseur pour la dégradation des colorants. Le catalyseur était très stable, actif et était facilement séparé du mélange réactionnel par filtration. On peut conclure des résultats que le catalyseur préparé pourrait être utilisé efficacement dans la dégradation/élimination des colorants de l'eau soumise à une validation et une utilisation ultérieures pour divers colorants. La actividad catalítica de Pd/ZrO2 se estudió en términos de la degradación del colorante rodamina-B en presencia de peróxido de hidrógeno. El Pd/ZrO2 se preparó mediante el método de impregnación, se calcinó a 750 °C y se caracterizó mediante XRD, SEM y edX. El catalizador mostró una buena actividad catalítica para la degradación del colorante a 333 K, usando 0.05 g del catalizador durante 5 h. La cinética de reacción siguió la cinética de pseudo-primer orden. Se aplicaron las isotermas de Freundlich, Langmuir y Temkin a los datos y se obtuvo el mejor ajuste con la isoterma de Freundlich. También se calcularon parámetros termodinámicos, como ΔH, ΔG y ΔS. Los valores negativos de ΔH (-291,406KJ/mol) y la energía libre de Gibbs (ΔG) mostraron la naturaleza exotérmica y espontánea del proceso. El valor positivo de ΔS (0.04832 KJ/mol K) mostró una afinidad adecuada del catalizador para la degradación del colorante. El catalizador era muy estable, activo y se separó fácilmente de la mezcla de reacción por filtración. Se puede concluir a partir de los resultados que el catalizador preparado podría usarse eficazmente en la degradación/eliminación de colorantes del agua sometida a validación y uso adicionales para diversos colorantes. The catalytic activity of Pd/ZrO2 was studied in terms of the degradation of rhodamine-B dye in the presence of hydrogen peroxide. Pd/ZrO2 was prepared by impregnation method, calcined at 750 °C and characterized by XRD, SEM and EDX. The catalyst showed good catalytic activity for dye degradation at 333 K, using 0.05 g of the catalyst during 5 h. The reaction kinetics followed the pseudo-first order kinetics. The Freundlich, Langmuir and Temkin isotherms were applied to the data and the best fit was obtained with Freundlich isotherm. Thermodynamic parameters, like ΔH, ΔG and ΔS were also calculated. The negative values of ΔH (−291.406 KJ/mol) and Gibbs free energy (ΔG) showed the exothermic and spontaneous nature of the process. The positive ΔS (0.04832 KJ/mol K) value showed suitable affinity of catalyst for dye degradation. The catalyst was very stable, active and was easily separated from the reaction mixture by filtration. It can be concluded from the results that the prepared catalyst could be effectively used in dyes degradation/removal from water subjected to further validation and use for various dyes. تمت دراسة النشاط الحفاز لـ Pd/ZrO2 من حيث تحلل صبغة الرودامين- B في وجود بيروكسيد الهيدروجين. تم تحضير Pd/ZrO2 بطريقة التشريب، وتم تحميصه عند 750 درجة مئوية وتميزه بـ XRD و SEM و EDX. أظهر المحفز نشاطًا حفزيًا جيدًا لتحلل الصبغة عند 333 كلفن، باستخدام 0.05 جم من المحفز خلال 5 ساعات. اتبعت حركية التفاعل حركية الدرجة الأولى الزائفة. تم تطبيق متساوي الحرارة Freundlich و Langmuir و Temkin على البيانات وتم الحصول على أفضل ملاءمة مع متساوي الحرارة Freundlich. كما تم حساب المتغيرات الديناميكية الحرارية، مثل ΔH و ΔG و ΔS. أظهرت القيم السالبة لـ ΔH (-291.406 كيلوجول/مول) وطاقة جيبس الحرة (ΔG) الطبيعة الطاردة للحرارة والعفوية للعملية. أظهرت قيمة ΔS الموجبة (0.04832 KJ/mol K) تقاربًا مناسبًا للمحفز لتحلل الصبغة. كان المحفز مستقرًا ونشطًا للغاية وتم فصله بسهولة عن خليط التفاعل عن طريق الترشيح. يمكن الاستنتاج من النتائج أنه يمكن استخدام المحفز المحضر بشكل فعال في تحلل/إزالة الأصباغ من الماء الخاضع لمزيد من التحقق والاستخدام للأصباغ المختلفة.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Akash Tripathi; Santosh kumar; G.S. Jadhav; Dipak A. Jadhav; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Indrajit Chakraborty; S.M. Sathe; C.N. Khuman; M.M. Ghangrekar;

    This review emphasizes the applicability of bioelectrochemical systems for the treatment of wastewaters contaminated with xenobiotic compounds. Treatment options for dyes, antibiotics, aromatics and chlorinated compounds are reviewed in this article. Two major variants of bioelectrochemical systems, namely microbial fuel cell (MFC) and microbial electrolysis cell (MEC), are discussed in light of xenobiotics removal. The efficiency of each system in terms of pollutant removal and power recovered/utilised is discussed and degradation mechanisms for these biorefractory compounds are described. This review also discusses the removal and recovery of heavy metals through biocatalytic and electrochemical reduction in the cathodic chamber of MFC and MEC. Further, the future scope of research is also elaborated in light of different issues pertaining to the replicability and scalability of the system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials Science fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials Science for Energy Technologies
    Article . 2020 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials Science for Energy Technologies
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    59
    citations59
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials Science fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials Science for Energy Technologies
      Article . 2020 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials Science for Energy Technologies
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Manikanta M. Doki; Arun Kumar Mehta; Debkumar Chakraborty; Makarand M. Ghangrekar; +5 Authors

    Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m3 pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass. Fermented sewage with synthetic media consisting of sodium acetate and propionic acids at a surface-to-volume (S/V) ratio of 10 m2/m3 removed 89%, 93%, and 81% of chemical oxygen demand, ammonium nitrogen, and orthophosphate, respectively; whereas respective removal in fermented sewage alone without synthetic media was 73%, 73%, and 72% during batch operation of 120 h. The biomass yield of 0.88-0.95 g CODbiomass /g CODremoved with protein content of 40.3 ± 0.3%-43.9 ± 0.2% w/w was obtained for fermented sewage with synthetic media. The results revealed enhanced possibility of scaling-up the raceway reactor to recover resources from municipal wastewater and enable simultaneous high-rate PNSB single-cell protein production.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. Tholia; B. Neethu; G. D. Bhowmick; M. M. Ghangrekar;

    Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Biochemistry...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Biochemistry and Biotechnology
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Biochemistry...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Biochemistry and Biotechnology
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph