- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 07 Dec 2023 Denmark, Finland, United States, Czech Republic, Belgium, United Kingdom, Czech Republic, Italy, Russian Federation, Switzerland, France, Germany, Italy, Italy, Netherlands, Netherlands, France, France, Austria, Italy, Italy, Italy, Italy, Italy, Russian Federation, Switzerland, Netherlands, Russian Federation, France, Italy, United Kingdom, United Kingdom, Netherlands, Denmark, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | T-FORCES, UKRI | Assessing the Impacts of ..., EC | OEMC +8 projectsEC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| OEMC ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Tropical Biomes in Transition ,EC| FUNDIVEUROPE ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate change ,UKRI| Niche evolution of South American trees and its consequencesMo, Lidong; Zohner, Constantin; Reich, Peter; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver; Gamarra, Javier; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves; Alberti, Giorgio; Almeyda Zambrano, Angelica; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro; Brandl, Susanne; Brearley, Francis; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel; Coomes, David; Cornejo Valverde, Fernando; Corral-Rivas, José; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, André; Decuyper, Mathieu; Derroire, Géraldine; Devries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian; Eyre, Teresa; Fandohan, Adandé Belarmain; Fayle, Tom; Feldpausch, Ted; Ferreira, Leandro; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John; Hillers, Annika; Honorio Coronado, Eurídice; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew; Martin, Emanuel; Meave, Jorge; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa; Mukul, Sharif; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel; Poulsen, Axel Dalberg; Poulsen, John; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric; Seben, Vladimír; Serra-Diaz, Josep; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre; Stereńczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;doi: 10.1038/s41586-023-06723-z , 10.60692/wyx6q-sam13 , 10.5281/zenodo.10118907 , 10.60692/6a8h3-c8n24 , 10.3929/ethz-b-000647255 , 10.48350/188873 , 10.5281/zenodo.10021967
pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 147 citations 147 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Belgium, Germany, United Kingdom, Argentina, France, France, France, ArgentinaPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., AKA | Atmosphere and Climate Co..., ANR | MaCCMic +4 projectsNSF| Graduate Research Fellowship Program (GRFP) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| MaCCMic ,AKA| Resilience of Arctic terrestrial ecosystems under bioclimatic change ,EC| FORMICA ,ANR| IMPRINT ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataKlinges, David; Baecher, J. Alex; Lembrechts, Jonas; Maclean, Ilya; Lenoir, Jonathan; Greiser, Caroline; Ashcroft, Michael; Evans, Luke; Kearney, Michael; Aalto, Juha; Barrio, Isabel; de Frenne, Pieter; Guillemot, Joannès; Hylander, Kristoffer; Jucker, Tommaso; Kopecký, Martin; Luoto, Miska; Macek, Martin; Nijs, Ivan; Urban, Josef; van den Brink, Liesbeth; Vangansbeke, Pieter; von Oppen, Jonathan; Wild, Jan; Boike, Julia; Canessa, Rafaella; Nosetto, Marcelo; Rubtsov, Alexey; Sallo-Bravo, Jhonatan; Scheffers, Brett;AbstractAimThe scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.LocationTemperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).Time Period1960–2018.Major Taxa StudiedCase studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.MethodsWe compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.ResultsFor predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.Main ConclusionsWe propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Austria, Netherlands, Belgium, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEIris Hordijk; Lourens Poorter; Jingjing Liang; Peter B. Reich; Sergio de-Miguel; Gert-Jan Nabuurs; Javier G. P. Gamarra; Han Y. H. Chen; Mo Zhou; Susan K. Wiser; Hans Pretzsch; Alain Paquette; Nicolas Picard; Bruno Hérault; Jean-Francois Bastin; Giorgio Alberti; Meinrad Abegg; Yves C. Adou Yao; Angelica M. Almeyda Zambrano; Braulio V. Alvarado; Esteban Alvarez-Davila; Patricia Alvarez-Loayza; Luciana F. Alves; Iêda Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo-Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard C; Timothy Baker; Olaf Banki; Jorcely Barroso; Meredith L. Bastian; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Roberto Cazzolla Gatti; Ricardo G. Cesar; Goran Cesljar; Robin L. Chazdon; Chelsea Chisholm; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Colletta; David Coomes; Fernando Cornejo Valverde; Jose J. Corral-Rivas; Philip Crim; Jonathan Cumming; Selvadurai Dayanandan; André L. de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjevic; Aurélie Dourdain; Jiri Dolezal; Nestor Laurier Engone Obiang; Brian Enquist; Teresa Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Leandro V. Ferreira; Ted R. Feldpausch; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David Harris; Andrew Hector; Andreas Hemp; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Hyunkook Cho; Thomas Ibanez; Ilbin Jung; Nobuo Imai; Andrzej M. Jagodzinski; Bogdan Jaroszewicz; Vivian Johannsen; Carlos A. Joly; Tommaso Jucker; Viktor Karminov; Kuswata Kartawinata; Elizabeth Kearsley; David Kenfack; Deborah Kennard; Sebastian Kepfer-Rojas; Gunnar Keppel; Mohammed Latif Khan; Timothy Killeen; Hyun Seok Kim; Kanehiro Kitayama; Michael Köhl; Henn Korjus; Florian Kraxner; Diana Laarmann; Mait Lang; Simon Lewis; Huicui Lu; Natalia Lukina; Brian Maitner; Yadvinder Malhi; Eric Marcon; Beatriz Schwantes Marimon; Ben Hur Marimon-Junior; Andrew Robert Marshall; Emanuel Martin; Olga Martynenko; Jorge A. Meave; Omar Melo-Cruz; Casimiro Mendoza; Cory Merow; Stanislaw Miscicki; Abel Monteagudo Mendoza; Vanessa Moreno; Sharif A. Mukul; Philip Mundhenk; Maria G. Nava-Miranda; David Neill; Victor Neldner; Radovan Nevenic; Michael Ngugi; Pascal A. Niklaus; Jacek Oleksyn; Petr Ontikov; Edgar Ortiz-Malavasi; Yude Pan; Alexander Parada-Gutierrez; Elena Parfenova; Minjee Park; Marc Parren; Narayanaswamy Parthasarathy; Pablo L. Peri; Sebastian Pfautsch; Oliver L. Phillips; Maria Teresa Piedade; Daniel Piotto; Nigel C. A. Pitman; Martina Pollastrini; Irina Polo; Axel Dalberg Poulsen; John R. Poulsen; Freddy Ramirez Arevalo; Zorayda Restrepo-Correa; Mirco Rodeghiero; Samir Rolim; Anand Roopsind; Francesco Rovero; Ervan Rutishauser; Purabi Saikia; Christian Salas-Eljatib; Peter Schall; Dmitry Schepaschenko; Michael Scherer-Lorenzen; Bernhard Schmid; Jochen Schöngart; Eric B. Searle; Vladimír Seben; Federico Selvi; Josep M. Serra-Diaz; Douglas Sheil; Anatoly Shvidenko; Javier Silva-Espejo; Marcos Silveira; James Singh; Plinio Sist; Ferry Slik; Bonaventure Sonké; Alexandre F. Souza; Hans ter Steege; Krzysztof Stereńczak; Jens-Christian Svenning; Miroslav Svoboda; Ben Swanepoel; Natalia Targhetta; Nadja Tchebakova; Raquel Thomas; Elena Tikhonova; Peter Umunay; Vladimir Usoltsev; Renato Valencia; Fernando Valladares; Fons van der Plas; Tran Van Do;pmid: 40404639
pmc: PMC12098762
Abstract Species’ traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United KingdomPublisher:Wiley Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEAuthors: Jucker, T.; Bouriaud, O.; Avacaritei, D.; Coomes, D.A.;AbstractBoth theory and evidence suggest that diversity stabilises productivity in herbaceous plant communities through a combination of overyielding, species asynchrony and favourable species interactions. However, whether these same processes also promote stability in forest ecosystems has never been tested. Using tree ring data from permanent forest plots across Europe, we show that aboveground wood production is inherently more stable through time in mixed‐species forests. Faster rates of wood production (i.e. overyielding), decreased year‐to‐year variation in productivity through asynchronous responses of species to climate, and greater temporal stability in the growth rates of individual tree species all contributed strongly to stabilising productivity in mixed stands. Together, these findings reveal the central role of diversity in stabilising productivity in forests, and bring us closer to understanding the processes which enable diverse forests to remain productive under a wide range of environmental conditions.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 253 citations 253 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Swinfield, Tom; Milodowski, David; Jucker, Tommaso; Michele, Dalponte; Coomes, David;Description: LiDAR derived canopy structure and topography across SAFE, Maliau Conservation Area and Danum Valley in Malaysian Borneo. These maps were produced following a survey by the Natural Environment Research Council Airborne Research Facility in 2014. Georeferenced point clouds were tiled, noise points were removed and ground points classified using Lastools. Digital terrain models (DTM) were produced from classified ground points at 10 m resolution. Point clouds were normalised (through ground subtraction) to produce 1 m resolution pitfree canopy height model (CHM) rasters. Normalised CHMs were also used to produce 20 m resolution plant area density (PAD) profile and plant area index (PAI) rasters as well as a number of statistics calculated for 20 m resolution vertical profiles. Point density is reported as a means to assess data quality, higher values indicate more data and are likely to be more reliable, particularly for dense tall forests, which depend on high point densities for accurate ground detection. Above-ground carbon density was calculated at 1 ha resolution from top of canopy height and gap fraction (derived from canopy height models) also at 1 ha resolution.Project: This dataset was collected as part of the following SAFE research project: Influences of disturbance and environmental variation on biomass change in Malaysian BorneoFunding: These data were collected as part of research funded by: Natural Environmental Research Council (Human Modified Tropical Forests Consortium Grant, NE/K016377/1)This dataset is released under the CC-BY 4.0 licence, requiring that you cite the dataset in any outputs, but has the additional condition that you acknowledge the contribution of these funders in any outputs.Permits: These data were collected under permit from the following authorities:Sabah Biodiversity Council (Research licence Unknown)XML metadata: GEMINI compliant metadata for this dataset is available hereFiles: This dataset consists of 64 files: SAFE_archive_LiDAR_Swinfield.xlsx, Danum_acd.tif, Danum_chm.tif, Danum_dtm.tif, Danum_pad_canopy_height.tif, Danum_pad_kurt.tif, Danum_pad_mean.tif, Danum_pad_n_layers.tif, Danum_pad_shannon.tif, Danum_pad_shape.tif, Danum_pad_skew.tif, Danum_pad_std.tif, Danum_pai.tif, Danum_pai_02_10m.tif, Danum_pai_10_20m.tif, Danum_pai_20_30m.tif, Danum_pai_30_40m.tif, Danum_pai_40_50m.tif, Danum_pai_50_60m.tif, Danum_pai_60_70m.tif, Danum_pai_70_80m.tif, Danum_point_density.tif, Maliau_acd.tif, Maliau_chm.tif, Maliau_dtm.tif, Maliau_pad_n_layers.tif, Maliau_pad_canopy_height.tif, Maliau_pad_kurt.tif, Maliau_pad_mean.tif, Maliau_pad_shannon.tif, Maliau_pad_shape.tif, Maliau_pad_skew.tif, Maliau_pad_std.tif, Maliau_pai.tif, Maliau_pai_02_10m.tif, Maliau_pai_10_20m.tif, Maliau_pai_20_30m.tif, Maliau_pai_30_40m.tif, Maliau_pai_40_50m.tif, Maliau_pai_50_60m.tif, Maliau_pai_60_70m.tif, Maliau_pai_70_80m.tif, Maliau_point_density.tif, SAFE_acd.tif, SAFE_pad_canopy_height.tif, SAFE_chm.tif, SAFE_dtm.tif, SAFE_pad_kurt.tif, SAFE_pad_mean.tif, SAFE_pad_n_layers.tif, SAFE_pad_shannon.tif, SAFE_pad_shape.tif, SAFE_pad_skew.tif, SAFE_pad_std.tif, SAFE_pai.tif, SAFE_pai_02_10m.tif, SAFE_pai_10_20m.tif, SAFE_pai_20_30m.tif, SAFE_pai_30_40m.tif, SAFE_pai_40_50m.tif, SAFE_pai_50_60m.tif, SAFE_pai_60_70m.tif, SAFE_pai_70_80m.tif, SAFE_point_density.tifSAFE_archive_LiDAR_Swinfield.xlsxThis file only contains metadata for the files belowDanum_acd.tifDescription: Danum Valley above-ground carbon densityThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_acd)Description: Danum Valley above-ground carbon densityNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_acd: Above-ground carbon density (ACD) (Field type: numeric)Danum_chm.tifDescription: Danum Valley canopy height modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_chm)Description: Danum Valley canopy height modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_chm: Canopy height model (CHM) (Field type: numeric)Danum_dtm.tifDescription: Danum Valley digital terrain modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_dtm)Description: Danum Valley digital terrain modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_dtm: Digital terrain model (DTM) (Field type: numeric)Danum_pad_canopy_height.tifDescription: Danum Valley maximum canopy heightThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_canopy_height)Description: Danum Valley maximum canopy heightNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_canopy_height: Maximum canopy height (Field type: numeric)Danum_pad_kurt.tifDescription: Danum Valley plant area density kurtosisThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_kurt)Description: Danum Valley plant area density kurtosisNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_kurt: Plant area density kurtosis (Field type: numeric)Danum_pad_mean.tifDescription: Danum Valley plant area density meanThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_mean)Description: Danum Valley plant area density meanNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_mean: Plant area density central height (Field type: numeric)Danum_pad_n_layers.tifDescription: Danum Valley number of discrete plant area density layersThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_n_layers)Description: Danum Valley number of discrete plant area density layersNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_n_layers: Plant area density number of layers (Field type: numeric)Danum_pad_shannon.tifDescription: Danum Valley plant area density shannon indexThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_shannon)Description: Danum Valley plant area density shannon indexNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_shannon: Plant area density Shannon index (Field type: numeric)Danum_pad_shape.tifDescription: Danum Valley plant area density shapeThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_shape)Description: Danum Valley plant area density shapeNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_shape: Plant area density shape (Field type: numeric)Danum_pad_skew.tifDescription: Danum Valley plant area density skewThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_skew)Description: Danum Valley plant area density skewNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_skew: Plant area density skew (Field type: numeric)Danum_pad_std.tifDescription: Danum Valley plant area density standard deviationThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_std)Description: Danum Valley plant area density standard deviationNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_std: Plant area density standard deviation (Field type: numeric)Danum_pai.tifDescription: Danum Valley plant area indexThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai)Description: Danum Valley plant area indexNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai: Plant area index (Field type: numeric)Danum_pai_02_10m.tifDescription: Danum Valley plant area index between 2 m and 10 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_02_10m)Description: Danum Valley plant area index between 2 m and 10 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_02_10m: Plant area index between 2 m and 10 m above ground (Field type: numeric)Danum_pai_10_20m.tifDescription: Danum Valley plant area index between 10 m and 20 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_10_20m)Description: Danum Valley plant area index between 10 m and 20 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_10_20m: Plant area index between 10 m and 20 m above ground (Field type: numeric)Danum_pai_20_30m.tifDescription: Danum Valley plant area index between 20 m and 30 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_20_30m)Description: Danum Valley plant area index between 20 m and 30 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_20_30m: Plant area index between 20 m and 30 m above ground (Field type: numeric)Danum_pai_30_40m.tifDescription: Danum Valley plant area index between 30 m and 40 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_30_40m)Description: Danum Valley plant area index between 30 m and 40 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_30_40m: Plant area index between 30 m and 40 m above ground (Field type: numeric)Danum_pai_40_50m.tifDescription: Danum Valley plant area index between 40 m and 50 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_40_50m)Description: Danum Valley plant area index between 40 m and 50 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_40_50m: Plant area index between 40 m and 50 m above ground (Field type: numeric)Danum_pai_50_60m.tifDescription: Danum Valley plant area index between 50 m and 60 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_50_60m)Description: Danum Valley plant area index between 50 m and 60 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_50_60m: Plant area index between 50 m and 60 m above ground (Field type: numeric)Danum_pai_60_70m.tifDescription: Danum Valley plant area index between 60 m and 70 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_60_70m)Description: Danum Valley plant area index between 60 m and 70 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_60_70m: Plant area index between 60 m and 70 m above ground (Field type: numeric)Danum_pai_70_80m.tifDescription: Danum Valley plant area index between 70 m and 80 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_70_80m)Description: Danum Valley plant area index between 70 m and 80 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_70_80m: Plant area index between 70 m and 80 m above ground (Field type: numeric)Danum_point_density.tifDescription: Danum Valley LiDAR point densityThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_point_density)Description: Danum Valley LiDAR point densityNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_point_density: LiDAR point density (Field type: numeric)Maliau_acd.tifDescription: Maliau above-ground carbon densityThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_acd)Description: Maliau above-ground carbon densityNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_acd: Above-ground carbon density (ACD) (Field type: numeric)Maliau_chm.tifDescription: Maliau canopy height modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_chm)Description: Maliau canopy height modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_chm: Canopy height model (CHM) (Field type: numeric)Maliau_dtm.tifDescription: Maliau digital terrain modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_dtm)Description: Maliau digital terrain modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_dtm: Digital terrain model (DTM) (Field type: numeric)Maliau_pad_n_layers.tifDescription: Maliau number of discrete plant area density layersThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_n_layers)Description: Maliau maximum canopy heightNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_n_layers: Plant area density number of layers (Field type: numeric)Maliau_pad_canopy_height.tifDescription: Maliau maximum canopy heightThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_canopy_height)Description: Maliau plant area density kurtosisNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_canopy_height: Maximum canopy height (Field type: numeric)Maliau_pad_kurt.tifDescription: Maliau plant area density kurtosisThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_kurt)Description: Maliau plant area density meanNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_kurt: Plant area density kurtosis (Field type: numeric)Maliau_pad_mean.tifDescription: Maliau plant area density meanThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_mean)Description: Maliau number of discrete plant area density layersNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_mean: Plant area density central height (Field type: numeric)Maliau_pad_shannon.tifDescription: Maliau plant area density shannon indexThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_shannon)Description: Maliau plant area density shannon indexNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_shannon: Plant area density Shannon index (Field type: numeric)Maliau_pad_shape.tifDescription: Maliau plant area density shapeThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_shape)Description: Maliau plant area density shapeNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_shape: Plant area density shape (Field type: numeric)Maliau_pad_skew.tifDescription: Maliau plant area density skewThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_skew)Description: Maliau plant area density skewNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_skew: Plant area density skew (Field type: numeric)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4020696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 60visibility views 60 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4020696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 15 Dec 2020 United Kingdom, FinlandPublisher:Springer Science and Business Media LLC Funded by:UKRI | Forecasting the impacts o..., UKRI | Biodiversity and Ecosyste...UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsNicholas R. Vaughn; Tommaso Jucker; Tommaso Jucker; Radim Matula; Jakub Kvasnica; Robert M. Ewers; Tom Swinfield; Noreen Majalap; David A. Coomes; Martin Svátek; Ruben Valbuena; Ruben Valbuena; Terhi Riutta; Matheus Henrique Nunes; Gregory P. Asner; Martin Rejžek;pmid: 33750781
pmc: PMC7943823
AbstractThe past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/88865Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20811-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/88865Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20811-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Belgium, United Kingdom, France, Denmark, Italy, Netherlands, FrancePublisher:Elsevier BV Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEJing, Xin; Muys, Bart; Baeten, Lander; Bruelheide, Helge; de Wandeler, Hans; Desie, Ellen; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Jucker, Tommaso; Kardol, Paul; Pollastrini, Martina; Ratcliffe, Sophia; Scherer-Lorenzen, Michael; Selvi, Federico; Vancampenhout, Karen; van Der Plas, Fons; Verheyen, Kris; Vesterdal, Lars; Zuo, Juan; van Meerbeek, Koenraad;Tree species diversity promotes multiple ecosystem functions and services. However, little is known about how above- and belowground resource availability (light, nutrients, and water) and resource uptake capacity mediate tree species diversity effects on aboveground wood productivity and temporal stability of productivity in European forests and whether the effects differ between humid and arid regions. We used the data from six major European forest types along a latitudinal gradient to address those two questions. We found that neither leaf area index (a proxy for light uptake capacity), nor fine root biomass (a proxy for soil nutrient and water uptake capacity) was related to tree species richness. Leaf area index did, however, enhance productivity, but negatively affected stability. Productivity was further promoted by soil nutrient availability, while stability was enhanced by fine root biomass. We only found a positive effect of tree species richness on productivity in arid regions and a positive effect on stability in humid regions. This indicates a possible disconnection between productivity and stability regarding tree species richness effects. In other words, the mechanisms that drive the positive effects of tree species richness on productivity do not per se benefit stability simultaneously. Our findings therefore suggest that tree species richness effects are largely mediated by differences in climatic conditions rather than by differences in above- and belowground resource availability and uptake capacity at the regional scales.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.152560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.152560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors: Roberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; +95 AuthorsRoberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; Cang Hui; Albert Morera; Jean-François Bastin; Sergio de‐Miguel; Gert‐Jan Nabuurs; Jens‐Christian Svenning; Josep M. Serra‐Diaz; Cory Merow; Brian J. Enquist; Maria Kamenetsky; Jun‐Ho Lee; Jun Zhu; Jinyun Fang; Douglass F. Jacobs; Bryan C. Pijanowski; Arindam Banerjee; Robert Giaquinto; Giorgio Alberti; Angélica M. Almeyda Zambrano; Esteban Álvarez-Dávila; Alejandro Araujo‐Murakami; Valerio Avitabile; Gerardo Aymard; Radomir Bałazy; Christopher Baraloto; Jorcely Barroso; Meredith L. Bastian; Philippe Birnbaum; Robert Bitariho; Jan Bogaert; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Francis Q. Brearley; Eben N. Broadbent; Filippo Bussotti; Wendeson Castro; Ricardo G. César; Goran Češljar; Víctor Chama Moscoso; Han Y. H. Chen; Emil Cienciala; Connie J. Clark; David A. Coomes; Selvadurai Dayanandan; Mathieu Decuyper; Laura E. Dee; Jhon del Aguila‐Pasquel; Géraldine Derroire; Marie Noël Kamdem Djuikouo; Tran Van Do; Jiří Doležal; Ilija Đorđević; Julien Engel; Tom Fayle; Ted R. Feldpausch; Jonas Fridman; David J. Harris; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; Martin Herold; Thomas Ibanez; Andrzej M. Jagodziński; Bogdan Jaroszewicz; Kathryn J. Jeffery; Vivian Kvist Johannsen; Tommaso Jucker; Ahto Kangur; Victor Karminov; Kuswata Kartawinata; Deborah K. Kennard; Sebastian Kepfer‐Rojas; Gunnar Keppel; Mohammed Latif Khan; P. K. Khare; Timothy J Kileen; Hyun Seok Kim; Henn Korjus; Amit Kumar; Ashwani Kumar; Diana Laarmann; Nicolas Labrière; Mait Lang; Simon L. Lewis; Brian S. Maitner; Yadvinder Malhi; Andrew R. Marshall; Olga Martynenko; Abel L. Monteagudo Mendoza; Petr Ontikov; Edgar Ortiz‐Malavasi; Nadir Carolina Pallqui Camacho; Alain Paquette; Minjee Park;L'une des questions les plus fondamentales en écologie est de savoir combien d'espèces habitent la Terre. Cependant, en raison des défis logistiques et financiers massifs et des difficultés taxonomiques liées à la définition du concept d'espèce, le nombre global d'espèces, y compris celles des formes de vie importantes et bien étudiées telles que les arbres, reste encore largement inconnu. Ici, sur la base de données mondiales provenant de sources terrestres, nous estimons la richesse totale des espèces d'arbres aux niveaux mondial, continental et du biome. Nos résultats indiquent qu'il y a environ73 000 espèces d'arbres dans le monde, parmi lesquelles environ9 000 espèces d'arbres n'ont pas encore été découvertes. Environ 40 % des espèces d'arbres non découvertes se trouvent en Amérique du Sud. En outre, près d'un tiers de toutes les espèces d'arbres à découvrir peuvent être rares, avec des populations très faibles et une répartition spatiale limitée (probablement dans les basses terres tropicales et les montagnes éloignées). Ces résultats mettent en évidence la vulnérabilité de la biodiversité forestière mondiale aux changements anthropiques dans l'utilisation des terres et le climat, qui menacent de manière disproportionnée les espèces rares et donc la richesse mondiale en arbres. Una de las preguntas más fundamentales en ecología es cuántas especies habitan la Tierra. Sin embargo, debido a los enormes desafíos logísticos y financieros y a las dificultades taxonómicas relacionadas con la definición del concepto de especie, el número global de especies, incluidas las de formas de vida importantes y bien estudiadas, como los árboles, sigue siendo en gran medida desconocido. Aquí, con base en datos globales de fuentes terrestres, estimamos la riqueza total de especies de árboles a nivel global, continental y de biomas. Nuestros resultados indican que hay ~73,000 especies de árboles a nivel mundial, entre las cuales ~9,000 especies de árboles aún no se han descubierto. Aproximadamente el 40% de las especies de árboles no descubiertas se encuentran en América del Sur. Además, casi un tercio de todas las especies de árboles por descubrir pueden ser raras, con poblaciones muy bajas y una distribución espacial limitada (probablemente en tierras bajas y montañas tropicales remotas). Estos hallazgos ponen de relieve la vulnerabilidad de la biodiversidad forestal mundial a los cambios antropogénicos en el uso de la tierra y el clima, que amenazan desproporcionadamente a las especies raras y, por lo tanto, a la riqueza arbórea mundial. One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. أحد أهم الأسئلة الأساسية في علم البيئة هو عدد الأنواع التي تعيش على الأرض. ومع ذلك، نظرًا للتحديات اللوجستية والمالية الهائلة والصعوبات التصنيفية المرتبطة بتعريف مفهوم الأنواع، لا تزال الأعداد العالمية للأنواع، بما في ذلك أشكال الحياة المهمة والمدروسة جيدًا مثل الأشجار، غير معروفة إلى حد كبير. هنا، استنادًا إلى البيانات العالمية من مصادر أرضية، نقدر إجمالي ثراء أنواع الأشجار على المستويات العالمية والقارية والبيولوجية. تشير نتائجنا إلى أن هناك 73000 نوع من الأشجار على مستوى العالم، من بينها 9000 نوع من الأشجار لم يتم اكتشافها بعد. يوجد ما يقرب من 40 ٪ من أنواع الأشجار غير المكتشفة في أمريكا الجنوبية. علاوة على ذلك، قد يكون ما يقرب من ثلث جميع أنواع الأشجار التي سيتم اكتشافها نادرًا، مع أعداد قليلة جدًا وتوزيع مكاني محدود (على الأرجح في الأراضي المنخفضة والجبال الاستوائية النائية). تسلط هذه النتائج الضوء على ضعف التنوع البيولوجي العالمي للغابات أمام التغيرات البشرية المنشأ في استخدام الأراضي والمناخ، والتي تهدد بشكل غير متناسب الأنواع النادرة وبالتالي ثراء الأشجار العالمي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, United Kingdom, United KingdomPublisher:Wiley Funded by:UKRI | Combining long-term field..., UKRI | A 3D perspective on the e..., UKRI | Forecasting the impacts o...UKRI| Combining long-term field data and remote sensing to test how tree diversity influences aboveground biomass recovery in logged tropical forests ,UKRI| A 3D perspective on the effects of topography and wind on forest height and dynamics ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJackson, Toby D; Fischer, Fabian J; Vincent, Grégoire; Gorgens, Eric B; Keller, Michael; Chave, Jérôme; Jucker, Tommaso; Coomes, David A;AbstractThe future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short‐lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old‐growth tropical forests over a 4–5‐year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small‐scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.
Global Change Biolog... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016Embargo end date: 06 Jul 2016 France, Netherlands, Netherlands, France, Australia, United Kingdom, Russian Federation, Russian Federation, United States, France, Italy, United Kingdom, FrancePublisher:Wiley Funded by:UKRI | RootDetect: Remote Detect..., ANR | TULIP, UKRI | Biodiversity and Ecosyste...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,ANR| TULIP ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsPierre Ploton; Bonaventure Sonké; David I. Forrester; Michael Schlund; David A. Coomes; Jérôme Chave; Matthias Haeni; Craig G. Lorimer; Beatrice M. M. Wedeux; Tommaso Jucker; Robert J. Holdaway; Karin Y. van Ewijk; Steven I. Higgins; Mark C. Vanderwel; Lourens Poorter; Hannsjörg Wöll; Frans Bongers; Murray Woods; Glenn R. Moncrieff; Anna T. Trugman; Stéphane Takoudjou Momo; Stéphane Takoudjou Momo; Yoshiko Iida; Michele Dalponte; Peter L. Marshall; Wenhua Xiang; Kassim Abd Rahman; Cécile Antin; Cécile Antin; Frank J. Sterck; Peter Waldner; Vladimir A. Usoltsev; Christian Wirth; Nicolas Barbier; John P. Caspersen; Niklaus E. Zimmermann;pmid: 27381364
pmc: PMC6849852
AbstractRemote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able – for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed – specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large‐scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.
Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/34312Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5650m5vjData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/257546Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2017Full-Text: https://hal.science/hal-01824479Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 307 citations 307 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/34312Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5650m5vjData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/257546Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2017Full-Text: https://hal.science/hal-01824479Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 07 Dec 2023 Denmark, Finland, United States, Czech Republic, Belgium, United Kingdom, Czech Republic, Italy, Russian Federation, Switzerland, France, Germany, Italy, Italy, Netherlands, Netherlands, France, France, Austria, Italy, Italy, Italy, Italy, Italy, Russian Federation, Switzerland, Netherlands, Russian Federation, France, Italy, United Kingdom, United Kingdom, Netherlands, Denmark, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | T-FORCES, UKRI | Assessing the Impacts of ..., EC | OEMC +8 projectsEC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| OEMC ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Tropical Biomes in Transition ,EC| FUNDIVEUROPE ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate change ,UKRI| Niche evolution of South American trees and its consequencesMo, Lidong; Zohner, Constantin; Reich, Peter; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver; Gamarra, Javier; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves; Alberti, Giorgio; Almeyda Zambrano, Angelica; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro; Brandl, Susanne; Brearley, Francis; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel; Coomes, David; Cornejo Valverde, Fernando; Corral-Rivas, José; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, André; Decuyper, Mathieu; Derroire, Géraldine; Devries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian; Eyre, Teresa; Fandohan, Adandé Belarmain; Fayle, Tom; Feldpausch, Ted; Ferreira, Leandro; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John; Hillers, Annika; Honorio Coronado, Eurídice; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew; Martin, Emanuel; Meave, Jorge; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa; Mukul, Sharif; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel; Poulsen, Axel Dalberg; Poulsen, John; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric; Seben, Vladimír; Serra-Diaz, Josep; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre; Stereńczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;doi: 10.1038/s41586-023-06723-z , 10.60692/wyx6q-sam13 , 10.5281/zenodo.10118907 , 10.60692/6a8h3-c8n24 , 10.3929/ethz-b-000647255 , 10.48350/188873 , 10.5281/zenodo.10021967
pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 147 citations 147 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Belgium, Germany, United Kingdom, Argentina, France, France, France, ArgentinaPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., AKA | Atmosphere and Climate Co..., ANR | MaCCMic +4 projectsNSF| Graduate Research Fellowship Program (GRFP) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| MaCCMic ,AKA| Resilience of Arctic terrestrial ecosystems under bioclimatic change ,EC| FORMICA ,ANR| IMPRINT ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataKlinges, David; Baecher, J. Alex; Lembrechts, Jonas; Maclean, Ilya; Lenoir, Jonathan; Greiser, Caroline; Ashcroft, Michael; Evans, Luke; Kearney, Michael; Aalto, Juha; Barrio, Isabel; de Frenne, Pieter; Guillemot, Joannès; Hylander, Kristoffer; Jucker, Tommaso; Kopecký, Martin; Luoto, Miska; Macek, Martin; Nijs, Ivan; Urban, Josef; van den Brink, Liesbeth; Vangansbeke, Pieter; von Oppen, Jonathan; Wild, Jan; Boike, Julia; Canessa, Rafaella; Nosetto, Marcelo; Rubtsov, Alexey; Sallo-Bravo, Jhonatan; Scheffers, Brett;AbstractAimThe scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.LocationTemperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).Time Period1960–2018.Major Taxa StudiedCase studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.MethodsWe compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.ResultsFor predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.Main ConclusionsWe propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Austria, Netherlands, Belgium, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEIris Hordijk; Lourens Poorter; Jingjing Liang; Peter B. Reich; Sergio de-Miguel; Gert-Jan Nabuurs; Javier G. P. Gamarra; Han Y. H. Chen; Mo Zhou; Susan K. Wiser; Hans Pretzsch; Alain Paquette; Nicolas Picard; Bruno Hérault; Jean-Francois Bastin; Giorgio Alberti; Meinrad Abegg; Yves C. Adou Yao; Angelica M. Almeyda Zambrano; Braulio V. Alvarado; Esteban Alvarez-Davila; Patricia Alvarez-Loayza; Luciana F. Alves; Iêda Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo-Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard C; Timothy Baker; Olaf Banki; Jorcely Barroso; Meredith L. Bastian; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Roberto Cazzolla Gatti; Ricardo G. Cesar; Goran Cesljar; Robin L. Chazdon; Chelsea Chisholm; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Colletta; David Coomes; Fernando Cornejo Valverde; Jose J. Corral-Rivas; Philip Crim; Jonathan Cumming; Selvadurai Dayanandan; André L. de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjevic; Aurélie Dourdain; Jiri Dolezal; Nestor Laurier Engone Obiang; Brian Enquist; Teresa Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Leandro V. Ferreira; Ted R. Feldpausch; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David Harris; Andrew Hector; Andreas Hemp; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Hyunkook Cho; Thomas Ibanez; Ilbin Jung; Nobuo Imai; Andrzej M. Jagodzinski; Bogdan Jaroszewicz; Vivian Johannsen; Carlos A. Joly; Tommaso Jucker; Viktor Karminov; Kuswata Kartawinata; Elizabeth Kearsley; David Kenfack; Deborah Kennard; Sebastian Kepfer-Rojas; Gunnar Keppel; Mohammed Latif Khan; Timothy Killeen; Hyun Seok Kim; Kanehiro Kitayama; Michael Köhl; Henn Korjus; Florian Kraxner; Diana Laarmann; Mait Lang; Simon Lewis; Huicui Lu; Natalia Lukina; Brian Maitner; Yadvinder Malhi; Eric Marcon; Beatriz Schwantes Marimon; Ben Hur Marimon-Junior; Andrew Robert Marshall; Emanuel Martin; Olga Martynenko; Jorge A. Meave; Omar Melo-Cruz; Casimiro Mendoza; Cory Merow; Stanislaw Miscicki; Abel Monteagudo Mendoza; Vanessa Moreno; Sharif A. Mukul; Philip Mundhenk; Maria G. Nava-Miranda; David Neill; Victor Neldner; Radovan Nevenic; Michael Ngugi; Pascal A. Niklaus; Jacek Oleksyn; Petr Ontikov; Edgar Ortiz-Malavasi; Yude Pan; Alexander Parada-Gutierrez; Elena Parfenova; Minjee Park; Marc Parren; Narayanaswamy Parthasarathy; Pablo L. Peri; Sebastian Pfautsch; Oliver L. Phillips; Maria Teresa Piedade; Daniel Piotto; Nigel C. A. Pitman; Martina Pollastrini; Irina Polo; Axel Dalberg Poulsen; John R. Poulsen; Freddy Ramirez Arevalo; Zorayda Restrepo-Correa; Mirco Rodeghiero; Samir Rolim; Anand Roopsind; Francesco Rovero; Ervan Rutishauser; Purabi Saikia; Christian Salas-Eljatib; Peter Schall; Dmitry Schepaschenko; Michael Scherer-Lorenzen; Bernhard Schmid; Jochen Schöngart; Eric B. Searle; Vladimír Seben; Federico Selvi; Josep M. Serra-Diaz; Douglas Sheil; Anatoly Shvidenko; Javier Silva-Espejo; Marcos Silveira; James Singh; Plinio Sist; Ferry Slik; Bonaventure Sonké; Alexandre F. Souza; Hans ter Steege; Krzysztof Stereńczak; Jens-Christian Svenning; Miroslav Svoboda; Ben Swanepoel; Natalia Targhetta; Nadja Tchebakova; Raquel Thomas; Elena Tikhonova; Peter Umunay; Vladimir Usoltsev; Renato Valencia; Fernando Valladares; Fons van der Plas; Tran Van Do;pmid: 40404639
pmc: PMC12098762
Abstract Species’ traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United KingdomPublisher:Wiley Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEAuthors: Jucker, T.; Bouriaud, O.; Avacaritei, D.; Coomes, D.A.;AbstractBoth theory and evidence suggest that diversity stabilises productivity in herbaceous plant communities through a combination of overyielding, species asynchrony and favourable species interactions. However, whether these same processes also promote stability in forest ecosystems has never been tested. Using tree ring data from permanent forest plots across Europe, we show that aboveground wood production is inherently more stable through time in mixed‐species forests. Faster rates of wood production (i.e. overyielding), decreased year‐to‐year variation in productivity through asynchronous responses of species to climate, and greater temporal stability in the growth rates of individual tree species all contributed strongly to stabilising productivity in mixed stands. Together, these findings reveal the central role of diversity in stabilising productivity in forests, and bring us closer to understanding the processes which enable diverse forests to remain productive under a wide range of environmental conditions.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 253 citations 253 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Swinfield, Tom; Milodowski, David; Jucker, Tommaso; Michele, Dalponte; Coomes, David;Description: LiDAR derived canopy structure and topography across SAFE, Maliau Conservation Area and Danum Valley in Malaysian Borneo. These maps were produced following a survey by the Natural Environment Research Council Airborne Research Facility in 2014. Georeferenced point clouds were tiled, noise points were removed and ground points classified using Lastools. Digital terrain models (DTM) were produced from classified ground points at 10 m resolution. Point clouds were normalised (through ground subtraction) to produce 1 m resolution pitfree canopy height model (CHM) rasters. Normalised CHMs were also used to produce 20 m resolution plant area density (PAD) profile and plant area index (PAI) rasters as well as a number of statistics calculated for 20 m resolution vertical profiles. Point density is reported as a means to assess data quality, higher values indicate more data and are likely to be more reliable, particularly for dense tall forests, which depend on high point densities for accurate ground detection. Above-ground carbon density was calculated at 1 ha resolution from top of canopy height and gap fraction (derived from canopy height models) also at 1 ha resolution.Project: This dataset was collected as part of the following SAFE research project: Influences of disturbance and environmental variation on biomass change in Malaysian BorneoFunding: These data were collected as part of research funded by: Natural Environmental Research Council (Human Modified Tropical Forests Consortium Grant, NE/K016377/1)This dataset is released under the CC-BY 4.0 licence, requiring that you cite the dataset in any outputs, but has the additional condition that you acknowledge the contribution of these funders in any outputs.Permits: These data were collected under permit from the following authorities:Sabah Biodiversity Council (Research licence Unknown)XML metadata: GEMINI compliant metadata for this dataset is available hereFiles: This dataset consists of 64 files: SAFE_archive_LiDAR_Swinfield.xlsx, Danum_acd.tif, Danum_chm.tif, Danum_dtm.tif, Danum_pad_canopy_height.tif, Danum_pad_kurt.tif, Danum_pad_mean.tif, Danum_pad_n_layers.tif, Danum_pad_shannon.tif, Danum_pad_shape.tif, Danum_pad_skew.tif, Danum_pad_std.tif, Danum_pai.tif, Danum_pai_02_10m.tif, Danum_pai_10_20m.tif, Danum_pai_20_30m.tif, Danum_pai_30_40m.tif, Danum_pai_40_50m.tif, Danum_pai_50_60m.tif, Danum_pai_60_70m.tif, Danum_pai_70_80m.tif, Danum_point_density.tif, Maliau_acd.tif, Maliau_chm.tif, Maliau_dtm.tif, Maliau_pad_n_layers.tif, Maliau_pad_canopy_height.tif, Maliau_pad_kurt.tif, Maliau_pad_mean.tif, Maliau_pad_shannon.tif, Maliau_pad_shape.tif, Maliau_pad_skew.tif, Maliau_pad_std.tif, Maliau_pai.tif, Maliau_pai_02_10m.tif, Maliau_pai_10_20m.tif, Maliau_pai_20_30m.tif, Maliau_pai_30_40m.tif, Maliau_pai_40_50m.tif, Maliau_pai_50_60m.tif, Maliau_pai_60_70m.tif, Maliau_pai_70_80m.tif, Maliau_point_density.tif, SAFE_acd.tif, SAFE_pad_canopy_height.tif, SAFE_chm.tif, SAFE_dtm.tif, SAFE_pad_kurt.tif, SAFE_pad_mean.tif, SAFE_pad_n_layers.tif, SAFE_pad_shannon.tif, SAFE_pad_shape.tif, SAFE_pad_skew.tif, SAFE_pad_std.tif, SAFE_pai.tif, SAFE_pai_02_10m.tif, SAFE_pai_10_20m.tif, SAFE_pai_20_30m.tif, SAFE_pai_30_40m.tif, SAFE_pai_40_50m.tif, SAFE_pai_50_60m.tif, SAFE_pai_60_70m.tif, SAFE_pai_70_80m.tif, SAFE_point_density.tifSAFE_archive_LiDAR_Swinfield.xlsxThis file only contains metadata for the files belowDanum_acd.tifDescription: Danum Valley above-ground carbon densityThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_acd)Description: Danum Valley above-ground carbon densityNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_acd: Above-ground carbon density (ACD) (Field type: numeric)Danum_chm.tifDescription: Danum Valley canopy height modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_chm)Description: Danum Valley canopy height modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_chm: Canopy height model (CHM) (Field type: numeric)Danum_dtm.tifDescription: Danum Valley digital terrain modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_dtm)Description: Danum Valley digital terrain modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_dtm: Digital terrain model (DTM) (Field type: numeric)Danum_pad_canopy_height.tifDescription: Danum Valley maximum canopy heightThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_canopy_height)Description: Danum Valley maximum canopy heightNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_canopy_height: Maximum canopy height (Field type: numeric)Danum_pad_kurt.tifDescription: Danum Valley plant area density kurtosisThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_kurt)Description: Danum Valley plant area density kurtosisNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_kurt: Plant area density kurtosis (Field type: numeric)Danum_pad_mean.tifDescription: Danum Valley plant area density meanThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_mean)Description: Danum Valley plant area density meanNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_mean: Plant area density central height (Field type: numeric)Danum_pad_n_layers.tifDescription: Danum Valley number of discrete plant area density layersThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_n_layers)Description: Danum Valley number of discrete plant area density layersNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_n_layers: Plant area density number of layers (Field type: numeric)Danum_pad_shannon.tifDescription: Danum Valley plant area density shannon indexThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_shannon)Description: Danum Valley plant area density shannon indexNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_shannon: Plant area density Shannon index (Field type: numeric)Danum_pad_shape.tifDescription: Danum Valley plant area density shapeThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_shape)Description: Danum Valley plant area density shapeNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_shape: Plant area density shape (Field type: numeric)Danum_pad_skew.tifDescription: Danum Valley plant area density skewThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_skew)Description: Danum Valley plant area density skewNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_skew: Plant area density skew (Field type: numeric)Danum_pad_std.tifDescription: Danum Valley plant area density standard deviationThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pad_std)Description: Danum Valley plant area density standard deviationNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pad_std: Plant area density standard deviation (Field type: numeric)Danum_pai.tifDescription: Danum Valley plant area indexThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai)Description: Danum Valley plant area indexNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai: Plant area index (Field type: numeric)Danum_pai_02_10m.tifDescription: Danum Valley plant area index between 2 m and 10 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_02_10m)Description: Danum Valley plant area index between 2 m and 10 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_02_10m: Plant area index between 2 m and 10 m above ground (Field type: numeric)Danum_pai_10_20m.tifDescription: Danum Valley plant area index between 10 m and 20 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_10_20m)Description: Danum Valley plant area index between 10 m and 20 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_10_20m: Plant area index between 10 m and 20 m above ground (Field type: numeric)Danum_pai_20_30m.tifDescription: Danum Valley plant area index between 20 m and 30 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_20_30m)Description: Danum Valley plant area index between 20 m and 30 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_20_30m: Plant area index between 20 m and 30 m above ground (Field type: numeric)Danum_pai_30_40m.tifDescription: Danum Valley plant area index between 30 m and 40 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_30_40m)Description: Danum Valley plant area index between 30 m and 40 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_30_40m: Plant area index between 30 m and 40 m above ground (Field type: numeric)Danum_pai_40_50m.tifDescription: Danum Valley plant area index between 40 m and 50 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_40_50m)Description: Danum Valley plant area index between 40 m and 50 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_40_50m: Plant area index between 40 m and 50 m above ground (Field type: numeric)Danum_pai_50_60m.tifDescription: Danum Valley plant area index between 50 m and 60 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_50_60m)Description: Danum Valley plant area index between 50 m and 60 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_50_60m: Plant area index between 50 m and 60 m above ground (Field type: numeric)Danum_pai_60_70m.tifDescription: Danum Valley plant area index between 60 m and 70 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_60_70m)Description: Danum Valley plant area index between 60 m and 70 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_60_70m: Plant area index between 60 m and 70 m above ground (Field type: numeric)Danum_pai_70_80m.tifDescription: Danum Valley plant area index between 70 m and 80 m above groundThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_pai_70_80m)Description: Danum Valley plant area index between 70 m and 80 m above groundNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_pai_70_80m: Plant area index between 70 m and 80 m above ground (Field type: numeric)Danum_point_density.tifDescription: Danum Valley LiDAR point densityThis file contains 1 data tables:Attribute table for raster (described in worksheet Danum_point_density)Description: Danum Valley LiDAR point densityNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Danum_point_density: LiDAR point density (Field type: numeric)Maliau_acd.tifDescription: Maliau above-ground carbon densityThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_acd)Description: Maliau above-ground carbon densityNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_acd: Above-ground carbon density (ACD) (Field type: numeric)Maliau_chm.tifDescription: Maliau canopy height modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_chm)Description: Maliau canopy height modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_chm: Canopy height model (CHM) (Field type: numeric)Maliau_dtm.tifDescription: Maliau digital terrain modelThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_dtm)Description: Maliau digital terrain modelNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_dtm: Digital terrain model (DTM) (Field type: numeric)Maliau_pad_n_layers.tifDescription: Maliau number of discrete plant area density layersThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_n_layers)Description: Maliau maximum canopy heightNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_n_layers: Plant area density number of layers (Field type: numeric)Maliau_pad_canopy_height.tifDescription: Maliau maximum canopy heightThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_canopy_height)Description: Maliau plant area density kurtosisNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_canopy_height: Maximum canopy height (Field type: numeric)Maliau_pad_kurt.tifDescription: Maliau plant area density kurtosisThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_kurt)Description: Maliau plant area density meanNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_kurt: Plant area density kurtosis (Field type: numeric)Maliau_pad_mean.tifDescription: Maliau plant area density meanThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_mean)Description: Maliau number of discrete plant area density layersNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_mean: Plant area density central height (Field type: numeric)Maliau_pad_shannon.tifDescription: Maliau plant area density shannon indexThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_shannon)Description: Maliau plant area density shannon indexNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_shannon: Plant area density Shannon index (Field type: numeric)Maliau_pad_shape.tifDescription: Maliau plant area density shapeThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_shape)Description: Maliau plant area density shapeNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_shape: Plant area density shape (Field type: numeric)Maliau_pad_skew.tifDescription: Maliau plant area density skewThis file contains 1 data tables:Attribute table for raster (described in worksheet Maliau_pad_skew)Description: Maliau plant area density skewNumber of fields: 1Number of data rows: Unavailable (table metadata description only).Fields: Maliau_pad_skew: Plant area density skew (Field type: numeric)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4020696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 60visibility views 60 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4020696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 15 Dec 2020 United Kingdom, FinlandPublisher:Springer Science and Business Media LLC Funded by:UKRI | Forecasting the impacts o..., UKRI | Biodiversity and Ecosyste...UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsNicholas R. Vaughn; Tommaso Jucker; Tommaso Jucker; Radim Matula; Jakub Kvasnica; Robert M. Ewers; Tom Swinfield; Noreen Majalap; David A. Coomes; Martin Svátek; Ruben Valbuena; Ruben Valbuena; Terhi Riutta; Matheus Henrique Nunes; Gregory P. Asner; Martin Rejžek;pmid: 33750781
pmc: PMC7943823
AbstractThe past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/88865Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20811-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/88865Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20811-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Belgium, United Kingdom, France, Denmark, Italy, Netherlands, FrancePublisher:Elsevier BV Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEJing, Xin; Muys, Bart; Baeten, Lander; Bruelheide, Helge; de Wandeler, Hans; Desie, Ellen; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Jucker, Tommaso; Kardol, Paul; Pollastrini, Martina; Ratcliffe, Sophia; Scherer-Lorenzen, Michael; Selvi, Federico; Vancampenhout, Karen; van Der Plas, Fons; Verheyen, Kris; Vesterdal, Lars; Zuo, Juan; van Meerbeek, Koenraad;Tree species diversity promotes multiple ecosystem functions and services. However, little is known about how above- and belowground resource availability (light, nutrients, and water) and resource uptake capacity mediate tree species diversity effects on aboveground wood productivity and temporal stability of productivity in European forests and whether the effects differ between humid and arid regions. We used the data from six major European forest types along a latitudinal gradient to address those two questions. We found that neither leaf area index (a proxy for light uptake capacity), nor fine root biomass (a proxy for soil nutrient and water uptake capacity) was related to tree species richness. Leaf area index did, however, enhance productivity, but negatively affected stability. Productivity was further promoted by soil nutrient availability, while stability was enhanced by fine root biomass. We only found a positive effect of tree species richness on productivity in arid regions and a positive effect on stability in humid regions. This indicates a possible disconnection between productivity and stability regarding tree species richness effects. In other words, the mechanisms that drive the positive effects of tree species richness on productivity do not per se benefit stability simultaneously. Our findings therefore suggest that tree species richness effects are largely mediated by differences in climatic conditions rather than by differences in above- and belowground resource availability and uptake capacity at the regional scales.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.152560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.152560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors: Roberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; +95 AuthorsRoberto Cazzolla Gatti; Peter B. Reich; Javier G. P. Gamarra; Thomas W. Crowther; Cang Hui; Albert Morera; Jean-François Bastin; Sergio de‐Miguel; Gert‐Jan Nabuurs; Jens‐Christian Svenning; Josep M. Serra‐Diaz; Cory Merow; Brian J. Enquist; Maria Kamenetsky; Jun‐Ho Lee; Jun Zhu; Jinyun Fang; Douglass F. Jacobs; Bryan C. Pijanowski; Arindam Banerjee; Robert Giaquinto; Giorgio Alberti; Angélica M. Almeyda Zambrano; Esteban Álvarez-Dávila; Alejandro Araujo‐Murakami; Valerio Avitabile; Gerardo Aymard; Radomir Bałazy; Christopher Baraloto; Jorcely Barroso; Meredith L. Bastian; Philippe Birnbaum; Robert Bitariho; Jan Bogaert; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Francis Q. Brearley; Eben N. Broadbent; Filippo Bussotti; Wendeson Castro; Ricardo G. César; Goran Češljar; Víctor Chama Moscoso; Han Y. H. Chen; Emil Cienciala; Connie J. Clark; David A. Coomes; Selvadurai Dayanandan; Mathieu Decuyper; Laura E. Dee; Jhon del Aguila‐Pasquel; Géraldine Derroire; Marie Noël Kamdem Djuikouo; Tran Van Do; Jiří Doležal; Ilija Đorđević; Julien Engel; Tom Fayle; Ted R. Feldpausch; Jonas Fridman; David J. Harris; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; Martin Herold; Thomas Ibanez; Andrzej M. Jagodziński; Bogdan Jaroszewicz; Kathryn J. Jeffery; Vivian Kvist Johannsen; Tommaso Jucker; Ahto Kangur; Victor Karminov; Kuswata Kartawinata; Deborah K. Kennard; Sebastian Kepfer‐Rojas; Gunnar Keppel; Mohammed Latif Khan; P. K. Khare; Timothy J Kileen; Hyun Seok Kim; Henn Korjus; Amit Kumar; Ashwani Kumar; Diana Laarmann; Nicolas Labrière; Mait Lang; Simon L. Lewis; Brian S. Maitner; Yadvinder Malhi; Andrew R. Marshall; Olga Martynenko; Abel L. Monteagudo Mendoza; Petr Ontikov; Edgar Ortiz‐Malavasi; Nadir Carolina Pallqui Camacho; Alain Paquette; Minjee Park;L'une des questions les plus fondamentales en écologie est de savoir combien d'espèces habitent la Terre. Cependant, en raison des défis logistiques et financiers massifs et des difficultés taxonomiques liées à la définition du concept d'espèce, le nombre global d'espèces, y compris celles des formes de vie importantes et bien étudiées telles que les arbres, reste encore largement inconnu. Ici, sur la base de données mondiales provenant de sources terrestres, nous estimons la richesse totale des espèces d'arbres aux niveaux mondial, continental et du biome. Nos résultats indiquent qu'il y a environ73 000 espèces d'arbres dans le monde, parmi lesquelles environ9 000 espèces d'arbres n'ont pas encore été découvertes. Environ 40 % des espèces d'arbres non découvertes se trouvent en Amérique du Sud. En outre, près d'un tiers de toutes les espèces d'arbres à découvrir peuvent être rares, avec des populations très faibles et une répartition spatiale limitée (probablement dans les basses terres tropicales et les montagnes éloignées). Ces résultats mettent en évidence la vulnérabilité de la biodiversité forestière mondiale aux changements anthropiques dans l'utilisation des terres et le climat, qui menacent de manière disproportionnée les espèces rares et donc la richesse mondiale en arbres. Una de las preguntas más fundamentales en ecología es cuántas especies habitan la Tierra. Sin embargo, debido a los enormes desafíos logísticos y financieros y a las dificultades taxonómicas relacionadas con la definición del concepto de especie, el número global de especies, incluidas las de formas de vida importantes y bien estudiadas, como los árboles, sigue siendo en gran medida desconocido. Aquí, con base en datos globales de fuentes terrestres, estimamos la riqueza total de especies de árboles a nivel global, continental y de biomas. Nuestros resultados indican que hay ~73,000 especies de árboles a nivel mundial, entre las cuales ~9,000 especies de árboles aún no se han descubierto. Aproximadamente el 40% de las especies de árboles no descubiertas se encuentran en América del Sur. Además, casi un tercio de todas las especies de árboles por descubrir pueden ser raras, con poblaciones muy bajas y una distribución espacial limitada (probablemente en tierras bajas y montañas tropicales remotas). Estos hallazgos ponen de relieve la vulnerabilidad de la biodiversidad forestal mundial a los cambios antropogénicos en el uso de la tierra y el clima, que amenazan desproporcionadamente a las especies raras y, por lo tanto, a la riqueza arbórea mundial. One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. أحد أهم الأسئلة الأساسية في علم البيئة هو عدد الأنواع التي تعيش على الأرض. ومع ذلك، نظرًا للتحديات اللوجستية والمالية الهائلة والصعوبات التصنيفية المرتبطة بتعريف مفهوم الأنواع، لا تزال الأعداد العالمية للأنواع، بما في ذلك أشكال الحياة المهمة والمدروسة جيدًا مثل الأشجار، غير معروفة إلى حد كبير. هنا، استنادًا إلى البيانات العالمية من مصادر أرضية، نقدر إجمالي ثراء أنواع الأشجار على المستويات العالمية والقارية والبيولوجية. تشير نتائجنا إلى أن هناك 73000 نوع من الأشجار على مستوى العالم، من بينها 9000 نوع من الأشجار لم يتم اكتشافها بعد. يوجد ما يقرب من 40 ٪ من أنواع الأشجار غير المكتشفة في أمريكا الجنوبية. علاوة على ذلك، قد يكون ما يقرب من ثلث جميع أنواع الأشجار التي سيتم اكتشافها نادرًا، مع أعداد قليلة جدًا وتوزيع مكاني محدود (على الأرجح في الأراضي المنخفضة والجبال الاستوائية النائية). تسلط هذه النتائج الضوء على ضعف التنوع البيولوجي العالمي للغابات أمام التغيرات البشرية المنشأ في استخدام الأراضي والمناخ، والتي تهدد بشكل غير متناسب الأنواع النادرة وبالتالي ثراء الأشجار العالمي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, United Kingdom, United KingdomPublisher:Wiley Funded by:UKRI | Combining long-term field..., UKRI | A 3D perspective on the e..., UKRI | Forecasting the impacts o...UKRI| Combining long-term field data and remote sensing to test how tree diversity influences aboveground biomass recovery in logged tropical forests ,UKRI| A 3D perspective on the effects of topography and wind on forest height and dynamics ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJackson, Toby D; Fischer, Fabian J; Vincent, Grégoire; Gorgens, Eric B; Keller, Michael; Chave, Jérôme; Jucker, Tommaso; Coomes, David A;AbstractThe future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short‐lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old‐growth tropical forests over a 4–5‐year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small‐scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.
Global Change Biolog... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016Embargo end date: 06 Jul 2016 France, Netherlands, Netherlands, France, Australia, United Kingdom, Russian Federation, Russian Federation, United States, France, Italy, United Kingdom, FrancePublisher:Wiley Funded by:UKRI | RootDetect: Remote Detect..., ANR | TULIP, UKRI | Biodiversity and Ecosyste...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,ANR| TULIP ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsPierre Ploton; Bonaventure Sonké; David I. Forrester; Michael Schlund; David A. Coomes; Jérôme Chave; Matthias Haeni; Craig G. Lorimer; Beatrice M. M. Wedeux; Tommaso Jucker; Robert J. Holdaway; Karin Y. van Ewijk; Steven I. Higgins; Mark C. Vanderwel; Lourens Poorter; Hannsjörg Wöll; Frans Bongers; Murray Woods; Glenn R. Moncrieff; Anna T. Trugman; Stéphane Takoudjou Momo; Stéphane Takoudjou Momo; Yoshiko Iida; Michele Dalponte; Peter L. Marshall; Wenhua Xiang; Kassim Abd Rahman; Cécile Antin; Cécile Antin; Frank J. Sterck; Peter Waldner; Vladimir A. Usoltsev; Christian Wirth; Nicolas Barbier; John P. Caspersen; Niklaus E. Zimmermann;pmid: 27381364
pmc: PMC6849852
AbstractRemote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able – for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed – specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large‐scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.
Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/34312Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5650m5vjData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/257546Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2017Full-Text: https://hal.science/hal-01824479Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 307 citations 307 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/34312Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5650m5vjData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/257546Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2017Full-Text: https://hal.science/hal-01824479Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu