- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 16 Jul 2024 SwitzerlandPublisher:Copernicus GmbH Funded by:RCN | MASSIVE - MAchine learnin..., SNSF | Process-based modelling o..., +1 projectsRCN| MASSIVE - MAchine learning, Surface mass balance of glaciers, Snow cover, In-situ data, Volume change, Earth observation ,SNSF| Process-based modelling of global glacier changes (PROGGRES) ,[no funder available] ,RCN| SNOWDEPTH - Global snow depths from spaceborne remote sensing for permafrost, high-elevation precipitation, and climate reanalysesAuthors:Livia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
+31 AuthorsFanny Brun
Fanny Brun in OpenAIRELivia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
Fanny Brun
Fanny Brun in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIRELiss M. Andreassen;
Liss M. Andreassen
Liss M. Andreassen in OpenAIREJoaquín M. C. Belart;
Joaquín M. C. Belart
Joaquín M. C. Belart in OpenAIREÉtienne Berthier;
Étienne Berthier
Étienne Berthier in OpenAIREAtanu Bhattacharya;
Atanu Bhattacharya
Atanu Bhattacharya in OpenAIRELaura Boehm;
Laura Boehm
Laura Boehm in OpenAIRETobias Bolch;
Tobias Bolch
Tobias Bolch in OpenAIREAmaury Dehecq;
Amaury Dehecq
Amaury Dehecq in OpenAIREInès Dussaillant;
Inès Dussaillant
Inès Dussaillant in OpenAIREDaniel Falaschi;
Daniel Falaschi
Daniel Falaschi in OpenAIRECaitlyn Florentine;
Caitlyn Florentine
Caitlyn Florentine in OpenAIREDana Floricioiu;
Dana Floricioiu
Dana Floricioiu in OpenAIREChristian Ginzler;
Christian Ginzler
Christian Ginzler in OpenAIREGrégoire Guillet;
Grégoire Guillet
Grégoire Guillet in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREMatthias Huss;
Matthias Huss
Matthias Huss in OpenAIREAndreas Kääb;
Andreas Kääb
Andreas Kääb in OpenAIREOwen King;
Owen King
Owen King in OpenAIREChristoph Klug;
Christoph Klug
Christoph Klug in OpenAIREFriedrich Knuth;
Friedrich Knuth
Friedrich Knuth in OpenAIRELukas Krieger;
Jeff La Frenierre;Lukas Krieger
Lukas Krieger in OpenAIRERobert McNabb;
Robert McNabb
Robert McNabb in OpenAIREChristopher McNeil;
Christopher McNeil
Christopher McNeil in OpenAIRERainer Prinz;
Rainer Prinz
Rainer Prinz in OpenAIRELouis Sass;
Louis Sass
Louis Sass in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREDavid Shean;
David Shean
David Shean in OpenAIREDésirée Treichler;
Anja Wendt;Désirée Treichler
Désirée Treichler in OpenAIRERuitang Yang;
Ruitang Yang
Ruitang Yang in OpenAIREAbstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing approaches. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty to enhance inter-comparison and empower physical process insights across glacier elevation-change studies.
The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:American Geophysical Union (AGU) Authors:Hannes Müller Schmied;
Linli An;Hannes Müller Schmied
Hannes Müller Schmied in OpenAIREJianping Huang;
Jianping Huang
Jianping Huang in OpenAIRERomain Hugonnet;
+10 AuthorsRomain Hugonnet
Romain Hugonnet in OpenAIREHannes Müller Schmied;
Linli An;Hannes Müller Schmied
Hannes Müller Schmied in OpenAIREJianping Huang;
Jianping Huang
Jianping Huang in OpenAIRERomain Hugonnet;
Romain Hugonnet; Romain Hugonnet;Romain Hugonnet
Romain Hugonnet in OpenAIREEtienne Berthier;
Etienne Berthier
Etienne Berthier in OpenAIREYadu Pokhrel;
Yadu Pokhrel
Yadu Pokhrel in OpenAIREJida Wang;
Jida Wang
Jida Wang in OpenAIREYoshihide Wada;
Yoshihide Wada
Yoshihide Wada in OpenAIREDenise Cáceres;
Denise Cáceres
Denise Cáceres in OpenAIREGuolong Zhang;
Guolong Zhang
Guolong Zhang in OpenAIREChunqiao Song;
Chunqiao Song
Chunqiao Song in OpenAIREHaipeng Yu;
Haipeng Yu
Haipeng Yu in OpenAIREdoi: 10.1029/2021gl095035
AbstractDeclines in terrestrial water storage (TWS) exacerbate regional water scarcity and global sea level rise. Increasing evidence has shown that recent TWS declines are substantial in ecologically fragile drylands, but the mechanism remains unclear. Here, by synergizing satellite observations and model simulations, we quantitatively attribute TWS trends during 2002–2016 in major climate zones to three mechanistic drivers: climate variability, climate change, and direct human activities. We reveal that climate variability had transitory and limited impacts (<20%), whereas warming‐induced glacier loss and direct human activities dominate the TWS loss in humid regions (∼103%) and drylands (∼64%), respectively. In non‐glacierized humid areas, climate variability generated regional water gains that offset synchronous TWS declines. Yet in drylands, TWS losses are enduring and more widespread with direct human activities, particularly unsustainable groundwater abstraction. Our findings highlight the substantive human footprints on the already vulnerable arid regions and an imperative need for improved dryland water conservation.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03671319Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03671319Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 01 Jan 2022 Switzerland, FrancePublisher:American Geophysical Union (AGU) Authors:Georg Veh;
Georg Veh
Georg Veh in OpenAIRENatalie Lützow;
Varvara Kharlamova;Natalie Lützow
Natalie Lützow in OpenAIREDmitry Petrakov;
+2 AuthorsDmitry Petrakov
Dmitry Petrakov in OpenAIREGeorg Veh;
Georg Veh
Georg Veh in OpenAIRENatalie Lützow;
Varvara Kharlamova;Natalie Lützow
Natalie Lützow in OpenAIREDmitry Petrakov;
Dmitry Petrakov
Dmitry Petrakov in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREOliver Korup;
Oliver Korup
Oliver Korup in OpenAIREAbstractThousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier‐related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field‐based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature‐driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid‐20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://insu.hal.science/insu-03671379Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021ef002426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://insu.hal.science/insu-03671379Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021ef002426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2024Publisher:OpenAlex Authors:Livia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
+31 AuthorsFanny Brun
Fanny Brun in OpenAIRELivia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
Fanny Brun
Fanny Brun in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIRELiss M. Andreassen;
Joaquín M. C. Belart;Liss M. Andreassen
Liss M. Andreassen in OpenAIREÉtienne Berthier;
Étienne Berthier
Étienne Berthier in OpenAIREAtanu Bhattacharya;
Atanu Bhattacharya
Atanu Bhattacharya in OpenAIRELaura Boehm;
Laura Boehm
Laura Boehm in OpenAIRETobias Bolch;
Tobias Bolch
Tobias Bolch in OpenAIREAmaury Dehecq;
Amaury Dehecq
Amaury Dehecq in OpenAIREInès Dussaillant;
Inès Dussaillant
Inès Dussaillant in OpenAIREDaniel Falaschi;
Daniel Falaschi
Daniel Falaschi in OpenAIRECaitlyn Florentine;
Caitlyn Florentine
Caitlyn Florentine in OpenAIREDana Floricioiu;
Dana Floricioiu
Dana Floricioiu in OpenAIREChristian Ginzler;
Christian Ginzler
Christian Ginzler in OpenAIREGrégoire Guillet;
Grégoire Guillet
Grégoire Guillet in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREMatthias Huss;
Matthias Huss
Matthias Huss in OpenAIREAndreas Kääb;
Andreas Kääb
Andreas Kääb in OpenAIREOwen King;
Owen King
Owen King in OpenAIREChristoph Klug;
Christoph Klug
Christoph Klug in OpenAIREFriedrich Knuth;
Friedrich Knuth
Friedrich Knuth in OpenAIRELukas Krieger;
Jeff La Frenierre;Lukas Krieger
Lukas Krieger in OpenAIRERobert McNabb;
Robert McNabb
Robert McNabb in OpenAIREChristopher McNeil;
Christopher McNeil
Christopher McNeil in OpenAIRERainer Prinz;
Rainer Prinz
Rainer Prinz in OpenAIRELouis Sass;
Louis Sass
Louis Sass in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREDavid Shean;
David Shean
David Shean in OpenAIREDésirée Treichler;
Anja Wendt;Désirée Treichler
Désirée Treichler in OpenAIRERuitang Yang;
Ruitang Yang
Ruitang Yang in OpenAIRERésumé. Les observations des changements de masse des glaciers sont essentielles pour comprendre la réponse des glaciers au changement climatique et aux impacts connexes, tels que le ruissellement régional, les changements écosystémiques et l'élévation du niveau de la mer à l'échelle mondiale. Les capteurs optiques et radar spatiaux permettent de quantifier les changements d'élévation des glaciers, et donc les changements de masse pluriannuels, à l'échelle régionale et mondiale. Cependant, les estimations d'un nombre croissant d'études montrent un large éventail de résultats avec des différences souvent au-delà des limites d'incertitude. Ici, nous présentons les résultats d'une expérience intercomparaison communautaire utilisant des données d'interférométrie stéréo optique spatiale (ASTER) et radar à ouverture synthétique (TanDEM-X) pour estimer les changements d'altitude pour des glaciers définis et des périodes cibles qui posent différents défis d'évaluation. En utilisant des modèles d'élévation numériques (DEM) fournis ou autotraités pour cinq sites de test, 12 groupes de recherche ont fourni un total de 97 ensembles de données de changement d'altitude spatiaux en utilisant diverses stratégies de traitement. La validation avec des données aéroportées a montré que l'utilisation d'une estimation d'ensemble promet de réduire les erreurs aléatoires provenant de différents instruments et méthodes de traitement, mais nécessite toujours une enquête et une correction plus complètes des erreurs systématiques. Nous avons constaté que la sélection de la scène, le traitement DEM et le co-enregistrement ont le plus grand impact sur les résultats. D'autres étapes de traitement, telles que le traitement des vides de données spatiales, les différences de périodes d'enquête ou la pénétration radar, peuvent toujours être importantes pour des cas individuels. Les recherches futures devraient se concentrer sur la mise à l'essai de différentes implémentations d'étapes de traitement individuelles (par exemple, le co-enregistrement) et aborder les questions liées aux corrections temporelles, à la pénétration radar, aux changements de zone glaciaire et à la conversion de densité. Enfin, notre communauté a clairement besoin de développer les meilleures pratiques, d'utiliser des logiciels ouverts et reproductibles et d'évaluer l'incertitude globale afin d'améliorer les comparaisons et de renforcer les connaissances sur les processus physiques dans les études de changement d'altitude des glaciers. Resumen. Observar los cambios en la masa de los glaciares es clave para comprender la respuesta de los glaciares al cambio climático y los impactos relacionados, como la escorrentía regional, los cambios en los ecosistemas y el aumento global del nivel del mar. Los sensores ópticos y de radar transportados por el espacio permiten cuantificar los cambios de elevación de los glaciares y, por lo tanto, los cambios de masa plurianuales, a escala regional y global. Sin embargo, las estimaciones de un número creciente de estudios muestran una amplia gama de resultados con diferencias que a menudo van más allá de los límites de incertidumbre. Aquí, presentamos el resultado de un experimento de intercomparación basado en la comunidad que utiliza datos estéreo óptico a bordo del espacio (ASTER) e interferometría de radar de apertura sintética (TanDEM-X) para estimar los cambios de elevación para glaciares definidos y períodos objetivo que plantean diferentes desafíos de evaluación. Utilizando modelos digitales de elevación (DEM) proporcionados o autoprocesados para cinco sitios de prueba, 12 grupos de investigación proporcionaron un total de 97 conjuntos de datos de cambio de elevación a bordo del espacio utilizando varias estrategias de procesamiento. La validación con datos aéreos mostró que el uso de una estimación de conjunto es prometedor para reducir los errores aleatorios de diferentes instrumentos y métodos de procesamiento, pero aún requiere una investigación y corrección más exhaustivas de los errores sistemáticos. Descubrimos que la selección de escenas, el procesamiento de DEM y el corregistro tienen el mayor impacto en los resultados. Otros pasos de procesamiento, como el tratamiento de vacíos de datos espaciales, las diferencias en los períodos de encuesta o la penetración del radar, aún pueden ser importantes para casos individuales. La investigación futura debe centrarse en probar diferentes implementaciones de pasos de procesamiento individuales (por ejemplo, registro conjunto) y abordar cuestiones relacionadas con correcciones temporales, penetración de radar, cambios en el área de los glaciares y conversión de densidad. Finalmente, existe una clara necesidad de que nuestra comunidad desarrolle las mejores prácticas, use software abierto y reproducible y evalúe la incertidumbre general para mejorar la intercomparación y potenciar los conocimientos de los procesos físicos en los estudios de cambio de elevación de glaciares. Abstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea-level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing strategies. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods, but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty in order to enhance inter-comparison and empower physical process insights across glacier elevation-change studies. الخلاصة. تعتبر ملاحظات التغيرات في كتلة الأنهار الجليدية أساسية لفهم استجابة الأنهار الجليدية لتغير المناخ والآثار ذات الصلة، مثل الجريان السطحي الإقليمي وتغيرات النظام الإيكولوجي وارتفاع مستوى سطح البحر العالمي. تتيح أجهزة الاستشعار البصرية والرادارية المحمولة في الفضاء قياس التغيرات في ارتفاع الأنهار الجليدية، وبالتالي التغيرات الكتلية متعددة السنوات، على نطاق إقليمي وعالمي. ومع ذلك، تظهر التقديرات من عدد متزايد من الدراسات مجموعة واسعة من النتائج مع وجود اختلافات غالبًا ما تتجاوز حدود عدم اليقين. هنا، نقدم نتائج تجربة مقارنة مجتمعية باستخدام بيانات الاستريو البصري المحمول في الفضاء (ASTER) وبيانات قياس التداخل بالرادار ذي الفتحة الاصطناعية (TanDEM - X) لتقدير تغيرات الارتفاع للأنهار الجليدية المحددة والفترات المستهدفة التي تشكل تحديات تقييم مختلفة. باستخدام نماذج الارتفاع الرقمية المقدمة أو ذاتية المعالجة (DEMs) لخمسة مواقع اختبار، قدمت 12 مجموعة بحثية ما مجموعه 97 مجموعة بيانات لتغيير الارتفاع المحمول في الفضاء باستخدام استراتيجيات معالجة مختلفة. أظهر التحقق من البيانات المحمولة جواً أن استخدام تقدير المجموعة يعد بتقليل الأخطاء العشوائية من الأدوات وطرق المعالجة المختلفة، ولكنه لا يزال يتطلب تحقيقًا أكثر شمولاً وتصحيحًا للأخطاء المنهجية. وجدنا أن اختيار المشهد ومعالجة DEM والتسجيل المشترك لها أكبر تأثير على النتائج. يمكن أن تظل خطوات المعالجة الأخرى، مثل معالجة فراغات البيانات المكانية أو الاختلافات في فترات المسح أو اختراق الرادار، مهمة للحالات الفردية. يجب أن تركز الأبحاث المستقبلية على اختبار التطبيقات المختلفة لخطوات المعالجة الفردية (مثل التسجيل المشترك) ومعالجة القضايا المتعلقة بالتصحيحات الزمنية واختراق الرادار وتغيرات المنطقة الجليدية وتحويل الكثافة. أخيرًا، هناك حاجة واضحة لمجتمعنا لتطوير أفضل الممارسات، واستخدام برامج مفتوحة وقابلة للتكرار، وتقييم عدم اليقين العام من أجل تعزيز المقارنة البينية وتمكين رؤى العمليات المادية عبر دراسات تغيير ارتفاع الأنهار الجليدية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/36pgy-59e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/36pgy-59e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu