- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, GermanyPublisher:Stockholm University Press Foken, Thomas; Babel, Wolfgang; Munger, J. William; Grönholm, Tiia; Vesala, Timo; Knohl, Alexander;handle: 10138/330559
Extensive studies are available that analyse time series of carbon dioxide and water flux measurements of FLUXNET sites over many years and link these results to climate change such as changes in atmospheric carbon dioxide concentration, air temperature and growing season length and other factors. Many of the sites show trends to a larger carbon uptake. Here we analyse time series of net ecosystem exchange, gross primary production, respiration, and evapotranspiration of four forest sites with particularly long measurement periods of about 20 years. The regular trends shown are interrupted by periods with higher or lower increases of carbon uptake. These breakpoints can be of very different origin and include forest decline, increased vegetation period, drought effects, heat waves, and changes in site heterogeneity. The influence of such breakpoints should be included in long-term studies of land-atmosphere exchange processes.
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Adrien C. Finzi; Kathleen Savage; Jianwu Tang; Aaron M. Ellison; David A. Orwig; Jerry M. Melillo; David R. Foster; Evan Goldman; Christopher B. Williams; Knute J. Nadelhoffer; Jonathan R. Thompson; Neil Pederson; Emery R. Boose; J. William Munger; Steven C. Wofsy; Zaixing Zhou; Serita D. Frey; Scott V. Ollinger; Michael Dietze; Audrey Barker Plotkin; John D. Aber; Trevor F. Keenan; Trevor F. Keenan; Andrew D. Richardson; Marc-André Giasson; Eric A. Davidson;doi: 10.1002/ecm.1423
handle: 2027.42/163495
AbstractHow, where, and why carbon (C) moves into and out of an ecosystem through time are long‐standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C‐cycle observations at the Harvard Forest in central Massachusetts, USA, a mid‐latitude landscape dominated by 80–120‐yr‐old closed‐canopy forests. These data answered four questions: (1) where and how much C is presently stored in dominant forest types; (2) what are current rates of C accrual and loss; (3) what biotic and abiotic factors contribute to variability in these rates; and (4) how has climate change affected the forest’s C cycle? Harvard Forest is an active C sink resulting from forest regrowth following land abandonment. Soil and tree biomass comprise nearly equal portions of existing C stocks. Net primary production (NPP) averaged 680–750 g C·m−2·yr−1; belowground NPP contributed 38–47% of the total, but with large uncertainty. Mineral soil C measured in the same inventory plots in 1992 and 2013 was too heterogeneous to detect change in soil‐C pools; however, radiocarbon data suggest a small but persistent sink of 10–30 g C·m−2·yr−1. Net ecosystem production (NEP) in hardwood stands averaged ~300 g C·m−2·yr−1. NEP in hemlock‐dominated forests averaged ~450 g C·m−2·yr−1until infestation by the hemlock woolly adelgid turned these stands into a net C source. Since 2000, NPP has increased by 26%. For the period 1992–2015, NEP increased 93%. The increase in mean annual temperature and growing season length alone accounted for ~30% of the increase in productivity. Interannual variations in GPP and NEP were also correlated with increases in red oak biomass, forest leaf area, and canopy‐scale light‐use efficiency. Compared to long‐term global change experiments at the Harvard Forest, the C sink in regrowing biomass equaled or exceeded C cycle modifications imposed by soil warming, N saturation, and hemlock removal. Results of this synthesis and comparison to simulation models suggest that forests across the region are likely to accrue C for decades to come but may be disrupted if the frequency or severity of biotic and abiotic disturbances increases.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/9nz1j5rxData sources: Bielefeld Academic Search Engine (BASE)Ecological MonographsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of New Hampshire: Scholars RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/9nz1j5rxData sources: Bielefeld Academic Search Engine (BASE)Ecological MonographsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of New Hampshire: Scholars RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Elsevier BV Wu, Chaoyang; Gonsamo, Alemu; Chen, Jing Ming; Kurz, Werner A.; Price, David T.; Lafleur, Peter M.; Jassal, Rachhpal S.; Dragoni, Danilo; Bohrer, Gil; Gough, Christopher M.; Verma, Shashi B.; Suyker, Andrew E.; Munger, J. William;Abstract Understanding feedbacks of ecosystem carbon sequestration to climate change is an urgent step in developing future ecosystem models. Using 187 site-years of flux data observed at 24 sites covering three plant functional types (i.e. evergreen forests (EF), deciduous forests (DF) and non-forest ecosystems (NF) (e.g., crop, grassland, wetland)) in North America, we present an analysis of both interannual and spatial relationships between annual net ecosystem production (NEP) and phenological indicators, including the flux-based carbon uptake period (CUP) and its transitions, degree-day-derived growing season length (GSL), and spring and autumn temperatures. Diverse responses were acquired between annul NEP and these indicators across PFTs. Forest ecosystems showed consistent patterns and sensitivities in the responses of annual NEP to CUP and its transitions both interannually and spatially. The NF ecosystems, on the contrary, exhibited different trends between interannual and spatial relationships. The impact of CUP onset on annual NEP in NF ecosystems was interannually negative but spatially positive. Generally, the GSL was observed to be a likely good indicator of annual NEP for all PFTs both interannually and spatially, although with relatively moderate correlations in NF sites. Both spring and autumn temperatures were positively correlated with annual NEP across sites while this potential was greatly reduced temporally with only negative impacts of autumn temperature on annual NEP in DF sites. Our analysis showed that DF ecosystems have the highest efficiency in accumulating NEP from warmer spring temperature and prolonged GSL, suggesting that future climate warming will favor deciduous species over evergreen species, and supporting the earlier observation that ecosystems with the greatest net carbon uptake have the longest GSL.
Global and Planetary... arrow_drop_down Global and Planetary ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2012.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global and Planetary... arrow_drop_down Global and Planetary ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2012.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 France, Belgium, France, France, Netherlands, FrancePublisher:The Royal Society Authors: Corinna Rebmann; Mirco Migliavacca; Sebastiaan Luyssaert; Sebastiaan Luyssaert; +19 AuthorsCorinna Rebmann; Mirco Migliavacca; Sebastiaan Luyssaert; Sebastiaan Luyssaert; Andrej Varlagin; Eddy Moors; Enrico Tomelleri; David Y. Hollinger; T. Andy Black; Shilong Piao; Bernard Longdoz; Werner L. Kutsch; Nadine Gobron; Nicolas Delbart; Philippe Ciais; Mark A. Friedl; Nobuko Saigusa; Andrew D. Richardson; Rodrigo Vargas; Markus Reichstein; Leonardo Montagnani; Leonardo Montagnani; J. William Munger;pmid: 20819815
pmc: PMC2981939
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2011Data sources: Europe PubMed CentralUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 804 citations 804 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2011Data sources: Europe PubMed CentralUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Proceedings of the National Academy of Sciences Authors: Medvigy, D.; Wofsy, Steven Charles; Munger, J. William; Moorcroft, Paul R;We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0912032107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 103 citations 103 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0912032107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, Netherlands, Belgium, France, United States, Germany, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPEEC| GHG EUROPENiu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Ammann, C.; Arain, M. A.; Arneth, A.; Aubinet, M.; Bar, A.; Beringer, J.; Bernhofer, C.; Black, A. T.; Buchmann, N.; Cescatti, A.; Chen, J.; Davis, K. J.; Dellwik, E.; Desai, A. R.; Dolman, H.; Etzold, S.; Francois, L.; Gianelle, Damiano; Gielen, B.; Goldstein, A.; Groenendijk, M.; Gu, L.; Hanan, N.; Helfter, C.; Hirano, T.; Hollinger, D. Y.; Jones, M. B.; Kiely, G.; Kolb, T. E.; Kutsch, W. L.; Lafleur, P.; Law, B. E.; Lawrence, D. M.; Li, L.; Lindroth, A.; Litvak, M.; Loustau, D.; Lund, M.; Ma, S.; Marek, M.; Martin, T. A.; Matteucci, G.; Migliavacca, M.; Montagnani, L.; Moors, E.; Munger, J. W.; Noormets, A.; Oechel, W.; Olejnik, J.; Paw, U.; Pilegaard, K.; Rambal, S.; Raschi, A.; Saleska, S.; Scott, R. L.; Seufert, G.; Spano, D.; Stoy, P.; Sutton, M. A.; Varlagin, A.; Vesala, T.; Weng, E.; Wohlfahrt, G.; Yang, B.; Zhang, Z.; Zhou, X.;pmid: 22404566
handle: 20.500.14243/267221 , 11388/46728 , 10067/982430151162165141 , 10449/20975
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:American Association for the Advancement of Science (AAAS) Barford, C. C.; WOFSY, S.C.; GOULDEN, M.L.; MUNGER, J.W.; PYLE, E.H.; URBANSKI, S.P.; HUTYRA, L.; SALESKA, S.R.; FITZJARRALD, D.; MOORE, K.;pmid: 11721047
Net uptake of carbon dioxide (CO 2 ) measured by eddy covariance in a 60- to 80-year-old forest averaged 2.0 ± 0.4 megagrams of carbon per hectare per year during 1993 to 2000, with interannual variations exceeding 50%. Biometry indicated storage of 1.6 ± 0.4 megagrams of carbon per hectare per year over 8 years, 60% in live biomass and the balance in coarse woody debris and soils, confirming eddy-covariance results. Weather and seasonal climate (e.g., variations in growing-season length or cloudiness) regulated seasonal and interannual fluctuations of carbon uptake. Legacies of prior disturbance and management, especially stand age and composition, controlled carbon uptake on the decadal time scale, implying that eastern forests could be managed for sequestration of carbon.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2001License: CC BYFull-Text: https://escholarship.org/uc/item/81c6n0nfData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2001Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1062962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 572 citations 572 popularity Top 1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2001License: CC BYFull-Text: https://escholarship.org/uc/item/81c6n0nfData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2001Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1062962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FinlandPublisher:Oxford University Press (OUP) Funded by:NSF | Collaborative Research an..., NSF | Collaborative Proposal: M..., NSF | NSFDEB-NERC: Addressing t... +2 projectsNSF| Collaborative Research and NEON: MSB Category 2: PalEON - a PaleoEcological Observatory Network to Assess Terrestrial Ecosystem Models ,NSF| Collaborative Proposal: MSB-FRA: Improved Understanding of Feedbacks between Ecosystem Phenology and the Weather-Environment Nexus at Local-to-Continental Scales ,NSF| NSFDEB-NERC: Addressing the plant growth source-sink debate through observations, experiments, and modelling ,NSF| EAGER-NEON: Scaling up terrestrial plant phenology from individuals to Continental scale ,NSF| LTER: From Microbes to Macrosystems: Understanding the response of ecological systems to global change drivers and their interactionsMalcolm S. Itter; Malcolm S. Itter; Daniel Kneeshaw; David A. Orwig; Neil Pederson; Loïc D'Orangeville; Loïc D'Orangeville; James M. Dyer; J. William Munger; Andrew D. Richardson; Yude Pan;Abstract Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16–18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.
Tree Physiology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpab101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpab101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 NetherlandsPublisher:Copernicus GmbH Funded by:DFG | From Catchments as Organi...DFG| From Catchments as Organised Systems to Models based on Dynamic Functional Units - CAOSAuthors: Jean Pierre Henry Balbaud Ometto; Celso von Randow; Steven C. Wofsy; James R. Ehleringer; +16 AuthorsJean Pierre Henry Balbaud Ometto; Celso von Randow; Steven C. Wofsy; James R. Ehleringer; Kaniska Mallick; J. William Munger; Martin Schlerf; Ivonne Trebs; Osvaldo L. L. Moraes; Scott R. Saleska; Eva Boegh; Antonio Donato Nobre; Laura Giustarini; Matthew N. Hayek; Darren T. Drewry; Darren T. Drewry; Alessandro Araújo; Lucien Hoffmann; Tomas F. Domingues; Bart Kruijt;Abstract. Canopy and aerodynamic conductances (gC and gA) are some of the key land surface variables determining the land surface response of climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE), which has important implications for global climate change and water resource management. Here, we present a novel approach to directly quantify the controls of the canopy-scale conductances on λET and λEE over multiple plant functions types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a physically-based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), which was originally postulated to occur at the leaf-scale. We show minor biophysical control on λET under wet conditions where net radiation (RN) determines 75 % to 80 % of the variances of λET. However, biophysical control on λET is amplified during the drought year (2005) and dry conditions, explaining 50 % to 65 % of the variances of λET. Despite substantial differences in gA, nearly similar “coupling” was found in forests and pastures due to the increase of gC induced by soil moisture. This suggests that the relative response of gC to per unit change of wetness is significantly higher compared to gA. Our results reveal the occurrence of a larger magnitude of hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability compared to the rainforest. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework faithfully captures the responses of gC and gA to changing atmospheric radiation, DA, and surface skin temperature, and, thus appears to be promising for the improvement of existing land surface parameterisations at a range of spatial scales.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/hess-2...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-2015-552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/hess-2...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-2015-552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United States, GermanyPublisher:Proceedings of the National Academy of Sciences Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Hollinger, D. Y.; Frolking, S. E.; Reich, P. B.; Plourde, L. C.; Katul, G. G.; Munger, J. W.; Oren, R.; Smith, M. L.; Paw U, K. T.; Bolstad, P. V.; Cook, B. D.; Day, M. C.; Martin, T. A.; Monson, R. K.; Schmid, H. P.;The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO 2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO 2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, GermanyPublisher:Stockholm University Press Foken, Thomas; Babel, Wolfgang; Munger, J. William; Grönholm, Tiia; Vesala, Timo; Knohl, Alexander;handle: 10138/330559
Extensive studies are available that analyse time series of carbon dioxide and water flux measurements of FLUXNET sites over many years and link these results to climate change such as changes in atmospheric carbon dioxide concentration, air temperature and growing season length and other factors. Many of the sites show trends to a larger carbon uptake. Here we analyse time series of net ecosystem exchange, gross primary production, respiration, and evapotranspiration of four forest sites with particularly long measurement periods of about 20 years. The regular trends shown are interrupted by periods with higher or lower increases of carbon uptake. These breakpoints can be of very different origin and include forest decline, increased vegetation period, drought effects, heat waves, and changes in site heterogeneity. The influence of such breakpoints should be included in long-term studies of land-atmosphere exchange processes.
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Adrien C. Finzi; Kathleen Savage; Jianwu Tang; Aaron M. Ellison; David A. Orwig; Jerry M. Melillo; David R. Foster; Evan Goldman; Christopher B. Williams; Knute J. Nadelhoffer; Jonathan R. Thompson; Neil Pederson; Emery R. Boose; J. William Munger; Steven C. Wofsy; Zaixing Zhou; Serita D. Frey; Scott V. Ollinger; Michael Dietze; Audrey Barker Plotkin; John D. Aber; Trevor F. Keenan; Trevor F. Keenan; Andrew D. Richardson; Marc-André Giasson; Eric A. Davidson;doi: 10.1002/ecm.1423
handle: 2027.42/163495
AbstractHow, where, and why carbon (C) moves into and out of an ecosystem through time are long‐standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C‐cycle observations at the Harvard Forest in central Massachusetts, USA, a mid‐latitude landscape dominated by 80–120‐yr‐old closed‐canopy forests. These data answered four questions: (1) where and how much C is presently stored in dominant forest types; (2) what are current rates of C accrual and loss; (3) what biotic and abiotic factors contribute to variability in these rates; and (4) how has climate change affected the forest’s C cycle? Harvard Forest is an active C sink resulting from forest regrowth following land abandonment. Soil and tree biomass comprise nearly equal portions of existing C stocks. Net primary production (NPP) averaged 680–750 g C·m−2·yr−1; belowground NPP contributed 38–47% of the total, but with large uncertainty. Mineral soil C measured in the same inventory plots in 1992 and 2013 was too heterogeneous to detect change in soil‐C pools; however, radiocarbon data suggest a small but persistent sink of 10–30 g C·m−2·yr−1. Net ecosystem production (NEP) in hardwood stands averaged ~300 g C·m−2·yr−1. NEP in hemlock‐dominated forests averaged ~450 g C·m−2·yr−1until infestation by the hemlock woolly adelgid turned these stands into a net C source. Since 2000, NPP has increased by 26%. For the period 1992–2015, NEP increased 93%. The increase in mean annual temperature and growing season length alone accounted for ~30% of the increase in productivity. Interannual variations in GPP and NEP were also correlated with increases in red oak biomass, forest leaf area, and canopy‐scale light‐use efficiency. Compared to long‐term global change experiments at the Harvard Forest, the C sink in regrowing biomass equaled or exceeded C cycle modifications imposed by soil warming, N saturation, and hemlock removal. Results of this synthesis and comparison to simulation models suggest that forests across the region are likely to accrue C for decades to come but may be disrupted if the frequency or severity of biotic and abiotic disturbances increases.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/9nz1j5rxData sources: Bielefeld Academic Search Engine (BASE)Ecological MonographsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of New Hampshire: Scholars RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/9nz1j5rxData sources: Bielefeld Academic Search Engine (BASE)Ecological MonographsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of New Hampshire: Scholars RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Elsevier BV Wu, Chaoyang; Gonsamo, Alemu; Chen, Jing Ming; Kurz, Werner A.; Price, David T.; Lafleur, Peter M.; Jassal, Rachhpal S.; Dragoni, Danilo; Bohrer, Gil; Gough, Christopher M.; Verma, Shashi B.; Suyker, Andrew E.; Munger, J. William;Abstract Understanding feedbacks of ecosystem carbon sequestration to climate change is an urgent step in developing future ecosystem models. Using 187 site-years of flux data observed at 24 sites covering three plant functional types (i.e. evergreen forests (EF), deciduous forests (DF) and non-forest ecosystems (NF) (e.g., crop, grassland, wetland)) in North America, we present an analysis of both interannual and spatial relationships between annual net ecosystem production (NEP) and phenological indicators, including the flux-based carbon uptake period (CUP) and its transitions, degree-day-derived growing season length (GSL), and spring and autumn temperatures. Diverse responses were acquired between annul NEP and these indicators across PFTs. Forest ecosystems showed consistent patterns and sensitivities in the responses of annual NEP to CUP and its transitions both interannually and spatially. The NF ecosystems, on the contrary, exhibited different trends between interannual and spatial relationships. The impact of CUP onset on annual NEP in NF ecosystems was interannually negative but spatially positive. Generally, the GSL was observed to be a likely good indicator of annual NEP for all PFTs both interannually and spatially, although with relatively moderate correlations in NF sites. Both spring and autumn temperatures were positively correlated with annual NEP across sites while this potential was greatly reduced temporally with only negative impacts of autumn temperature on annual NEP in DF sites. Our analysis showed that DF ecosystems have the highest efficiency in accumulating NEP from warmer spring temperature and prolonged GSL, suggesting that future climate warming will favor deciduous species over evergreen species, and supporting the earlier observation that ecosystems with the greatest net carbon uptake have the longest GSL.
Global and Planetary... arrow_drop_down Global and Planetary ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2012.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global and Planetary... arrow_drop_down Global and Planetary ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2012.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 France, Belgium, France, France, Netherlands, FrancePublisher:The Royal Society Authors: Corinna Rebmann; Mirco Migliavacca; Sebastiaan Luyssaert; Sebastiaan Luyssaert; +19 AuthorsCorinna Rebmann; Mirco Migliavacca; Sebastiaan Luyssaert; Sebastiaan Luyssaert; Andrej Varlagin; Eddy Moors; Enrico Tomelleri; David Y. Hollinger; T. Andy Black; Shilong Piao; Bernard Longdoz; Werner L. Kutsch; Nadine Gobron; Nicolas Delbart; Philippe Ciais; Mark A. Friedl; Nobuko Saigusa; Andrew D. Richardson; Rodrigo Vargas; Markus Reichstein; Leonardo Montagnani; Leonardo Montagnani; J. William Munger;pmid: 20819815
pmc: PMC2981939
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2011Data sources: Europe PubMed CentralUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 804 citations 804 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2011Data sources: Europe PubMed CentralUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Proceedings of the National Academy of Sciences Authors: Medvigy, D.; Wofsy, Steven Charles; Munger, J. William; Moorcroft, Paul R;We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0912032107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 103 citations 103 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0912032107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, Netherlands, Belgium, France, United States, Germany, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPEEC| GHG EUROPENiu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Ammann, C.; Arain, M. A.; Arneth, A.; Aubinet, M.; Bar, A.; Beringer, J.; Bernhofer, C.; Black, A. T.; Buchmann, N.; Cescatti, A.; Chen, J.; Davis, K. J.; Dellwik, E.; Desai, A. R.; Dolman, H.; Etzold, S.; Francois, L.; Gianelle, Damiano; Gielen, B.; Goldstein, A.; Groenendijk, M.; Gu, L.; Hanan, N.; Helfter, C.; Hirano, T.; Hollinger, D. Y.; Jones, M. B.; Kiely, G.; Kolb, T. E.; Kutsch, W. L.; Lafleur, P.; Law, B. E.; Lawrence, D. M.; Li, L.; Lindroth, A.; Litvak, M.; Loustau, D.; Lund, M.; Ma, S.; Marek, M.; Martin, T. A.; Matteucci, G.; Migliavacca, M.; Montagnani, L.; Moors, E.; Munger, J. W.; Noormets, A.; Oechel, W.; Olejnik, J.; Paw, U.; Pilegaard, K.; Rambal, S.; Raschi, A.; Saleska, S.; Scott, R. L.; Seufert, G.; Spano, D.; Stoy, P.; Sutton, M. A.; Varlagin, A.; Vesala, T.; Weng, E.; Wohlfahrt, G.; Yang, B.; Zhang, Z.; Zhou, X.;pmid: 22404566
handle: 20.500.14243/267221 , 11388/46728 , 10067/982430151162165141 , 10449/20975
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:American Association for the Advancement of Science (AAAS) Barford, C. C.; WOFSY, S.C.; GOULDEN, M.L.; MUNGER, J.W.; PYLE, E.H.; URBANSKI, S.P.; HUTYRA, L.; SALESKA, S.R.; FITZJARRALD, D.; MOORE, K.;pmid: 11721047
Net uptake of carbon dioxide (CO 2 ) measured by eddy covariance in a 60- to 80-year-old forest averaged 2.0 ± 0.4 megagrams of carbon per hectare per year during 1993 to 2000, with interannual variations exceeding 50%. Biometry indicated storage of 1.6 ± 0.4 megagrams of carbon per hectare per year over 8 years, 60% in live biomass and the balance in coarse woody debris and soils, confirming eddy-covariance results. Weather and seasonal climate (e.g., variations in growing-season length or cloudiness) regulated seasonal and interannual fluctuations of carbon uptake. Legacies of prior disturbance and management, especially stand age and composition, controlled carbon uptake on the decadal time scale, implying that eastern forests could be managed for sequestration of carbon.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2001License: CC BYFull-Text: https://escholarship.org/uc/item/81c6n0nfData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2001Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1062962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 572 citations 572 popularity Top 1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2001License: CC BYFull-Text: https://escholarship.org/uc/item/81c6n0nfData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2001Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1062962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FinlandPublisher:Oxford University Press (OUP) Funded by:NSF | Collaborative Research an..., NSF | Collaborative Proposal: M..., NSF | NSFDEB-NERC: Addressing t... +2 projectsNSF| Collaborative Research and NEON: MSB Category 2: PalEON - a PaleoEcological Observatory Network to Assess Terrestrial Ecosystem Models ,NSF| Collaborative Proposal: MSB-FRA: Improved Understanding of Feedbacks between Ecosystem Phenology and the Weather-Environment Nexus at Local-to-Continental Scales ,NSF| NSFDEB-NERC: Addressing the plant growth source-sink debate through observations, experiments, and modelling ,NSF| EAGER-NEON: Scaling up terrestrial plant phenology from individuals to Continental scale ,NSF| LTER: From Microbes to Macrosystems: Understanding the response of ecological systems to global change drivers and their interactionsMalcolm S. Itter; Malcolm S. Itter; Daniel Kneeshaw; David A. Orwig; Neil Pederson; Loïc D'Orangeville; Loïc D'Orangeville; James M. Dyer; J. William Munger; Andrew D. Richardson; Yude Pan;Abstract Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16–18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.
Tree Physiology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpab101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpab101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 NetherlandsPublisher:Copernicus GmbH Funded by:DFG | From Catchments as Organi...DFG| From Catchments as Organised Systems to Models based on Dynamic Functional Units - CAOSAuthors: Jean Pierre Henry Balbaud Ometto; Celso von Randow; Steven C. Wofsy; James R. Ehleringer; +16 AuthorsJean Pierre Henry Balbaud Ometto; Celso von Randow; Steven C. Wofsy; James R. Ehleringer; Kaniska Mallick; J. William Munger; Martin Schlerf; Ivonne Trebs; Osvaldo L. L. Moraes; Scott R. Saleska; Eva Boegh; Antonio Donato Nobre; Laura Giustarini; Matthew N. Hayek; Darren T. Drewry; Darren T. Drewry; Alessandro Araújo; Lucien Hoffmann; Tomas F. Domingues; Bart Kruijt;Abstract. Canopy and aerodynamic conductances (gC and gA) are some of the key land surface variables determining the land surface response of climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE), which has important implications for global climate change and water resource management. Here, we present a novel approach to directly quantify the controls of the canopy-scale conductances on λET and λEE over multiple plant functions types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a physically-based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), which was originally postulated to occur at the leaf-scale. We show minor biophysical control on λET under wet conditions where net radiation (RN) determines 75 % to 80 % of the variances of λET. However, biophysical control on λET is amplified during the drought year (2005) and dry conditions, explaining 50 % to 65 % of the variances of λET. Despite substantial differences in gA, nearly similar “coupling” was found in forests and pastures due to the increase of gC induced by soil moisture. This suggests that the relative response of gC to per unit change of wetness is significantly higher compared to gA. Our results reveal the occurrence of a larger magnitude of hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability compared to the rainforest. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework faithfully captures the responses of gC and gA to changing atmospheric radiation, DA, and surface skin temperature, and, thus appears to be promising for the improvement of existing land surface parameterisations at a range of spatial scales.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/hess-2...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-2015-552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/hess-2...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefHydrology and Earth System SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-2015-552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United States, GermanyPublisher:Proceedings of the National Academy of Sciences Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Hollinger, D. Y.; Frolking, S. E.; Reich, P. B.; Plourde, L. C.; Katul, G. G.; Munger, J. W.; Oren, R.; Smith, M. L.; Paw U, K. T.; Bolstad, P. V.; Cook, B. D.; Day, M. C.; Martin, T. A.; Monson, R. K.; Schmid, H. P.;The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO 2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO 2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu