Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global and Planetary...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global and Planetary Change
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis

Authors: Wu, Chaoyang; Gonsamo, Alemu; Chen, Jing Ming; Kurz, Werner A.; Price, David T.; Lafleur, Peter M.; Jassal, Rachhpal S.; +6 Authors

Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis

Abstract

Abstract Understanding feedbacks of ecosystem carbon sequestration to climate change is an urgent step in developing future ecosystem models. Using 187 site-years of flux data observed at 24 sites covering three plant functional types (i.e. evergreen forests (EF), deciduous forests (DF) and non-forest ecosystems (NF) (e.g., crop, grassland, wetland)) in North America, we present an analysis of both interannual and spatial relationships between annual net ecosystem production (NEP) and phenological indicators, including the flux-based carbon uptake period (CUP) and its transitions, degree-day-derived growing season length (GSL), and spring and autumn temperatures. Diverse responses were acquired between annul NEP and these indicators across PFTs. Forest ecosystems showed consistent patterns and sensitivities in the responses of annual NEP to CUP and its transitions both interannually and spatially. The NF ecosystems, on the contrary, exhibited different trends between interannual and spatial relationships. The impact of CUP onset on annual NEP in NF ecosystems was interannually negative but spatially positive. Generally, the GSL was observed to be a likely good indicator of annual NEP for all PFTs both interannually and spatially, although with relatively moderate correlations in NF sites. Both spring and autumn temperatures were positively correlated with annual NEP across sites while this potential was greatly reduced temporally with only negative impacts of autumn temperature on annual NEP in DF sites. Our analysis showed that DF ecosystems have the highest efficiency in accumulating NEP from warmer spring temperature and prolonged GSL, suggesting that future climate warming will favor deciduous species over evergreen species, and supporting the earlier observation that ecosystems with the greatest net carbon uptake have the longest GSL.

Country
United States
Keywords

550, Climate, spring temperature, 333, growing season length, 630, Atmospheric Sciences, Natural Resources and Conservation, Physical Sciences and Mathematics, carbon, Natural Resources Management and Policy, net ecosystem production, Oceanography and Atmospheric Sciences and Meteorology, gross primary production, climate change, Other Oceanography and Atmospheric Sciences and Meteorology, Sustainability, Earth Sciences, Other Environmental Sciences, Environmental Sciences, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
bronze