- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:IGI Global Authors: Abobakr Al-Sakkaf; Moaaz Elkabalawy; Eslam Mohammed Abdelkader;doi: 10.4018/ijsds.309120
Multi-criteria decision making (MCDM) on energy-efficient buildings has become essential in both the industry and academia as construction projects grow increasingly complex. With a prime goal of increasing its effectiveness, MCDM research has witnessed tremendous growth over the past three decades. Despite the necessity to monitor the research growth of a research topic to identify its trends and gaps, and hence shed light on research areas that warrant future research attention, there is a lack of systematic literature analysis in MCDM area. To fill this gap, this paper recruited a mixed-review method of scientometric and systematic reviews of 56 research papers on seven selected popular MCDM techniques published from 2010 to March 2021. The scientometric review identified the most prolific journals, keyword correlations, and geospatial connections between research countries in the MCDM area. On the other hand, the systematic review analysis showed that there are five main research topics in MCDM. Furthermore, the major approaches applied in MCDM research were investigated.
International Journa... arrow_drop_down International Journal of Strategic Decision SciencesArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4018/ijsds.309120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Strategic Decision SciencesArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4018/ijsds.309120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Ahmed Badawy; Abobakr Al-Sakkaf; Ghasan Alfalah; Eslam Mohammed Abdelkader; Tarek Zayed;handle: 10397/105258
The construction sector continues to experience significant challenges brought by new techniques and technologies. Hence, there is a dire need for construction companies to address critical issues concerning changing environmental conditions, construction innovations, market globalization and many other aspects, thereby enhancing their competitive edge. Thus, the primary goal for this research is to develop a multi-criteria decision making model that would consider and evaluate all essential factors in determining the competitiveness index of construction companies. In the developed model, three new pillars (3P) for competitiveness are introduced: (1) non-financial internal pillar; (2) non-financial external pillar; and (3) financial pillar. The 3P includes 6 categories and 26 factors that are defined and incorporated in the developed assessment model for the purpose of measuring the companies’ competitiveness. The weights for the identified factors are computed using fuzzy analytical network process (FANP) to diminish the uncertainty inherited within the judgment of the respondents. The weight of factors and their affiliated performance scores are used as an input for the preference ranking organization method for enrichment evaluation (PROMETHEE II) technique. In this regard, PROMETHEE II is undertaken as a ranking technique to prioritize any given construction company by determining its respective competitiveness index. The developed model is validated through five cases studies that reveal its potential of illustrating detailed analysis with respect to the competitive ability of construction companies. A sensitivity analysis is carried out to determine the most influential factors that affect the competitiveness of construction companies. It is anticipated that the developed evaluation model can be used in the decision-making process by all parties involved in construction projects. For instance, contractors can leverage the evaluation model in taking better decisions pertinent to the markup values. In addition, it can benefit employers in the evaluation process of contractors.
CivilEng arrow_drop_down CivilEngOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4109/3/4/49/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105258Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/civileng3040049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CivilEng arrow_drop_down CivilEngOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4109/3/4/49/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105258Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/civileng3040049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Other literature type , Journal 2020Publisher:Book Publisher International (a part of SCIENCEDOMAIN International) Authors: Eslam Mohammed Abdelkader; Abobakr Al-Sakkaf; Rasha Ahmed;The continuous increase in energy consumption has brought worldwide attention to its significant environmental effect, which is triggered by the increase in greenhouse gas emissions, global warming, and rapid climate change. As such, more energy efficient buildings are required to minimize the energy consumption of heating and cooling. The present study introduces a set of machine learning-based models to predict the heating and cooling loads in buildings. This includes back-propagation artificial neural network, generalized regression neural network, radial basis neural network, radial kernel support vector machines and ANOVA kernel support vector machines. The comparisons were conducted as per mean absolute percentage error (MAPE), mean absolute error (MAE), relative absolute error (RAE), root relative squared error (RRSE) and root-mean squared error (RMSE). The significances of the capacities of the machine learning models are evaluated using two-tailed student’s t-tests. Eventually, a holistic evaluation of the machine learning models is conducted using average ranking algorithm. Results demonstrate that the radial basis function network outperformed the afore-mentioned machine learning models significantly.
Decision Science Let... arrow_drop_down https://doi.org/10.9734/bpi/ca...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/castr/v6/2602f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Decision Science Let... arrow_drop_down https://doi.org/10.9734/bpi/ca...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/castr/v6/2602f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Ghasan Alfalah; Abobakr Al-Sakkaf; Eslam Mohammed Abdelkader; Tarek Zayed;doi: 10.3390/su14169955
Decreasing the impact of educational buildings on the environment is a primary concern of the sustainable building movement. However, limited research has centered on improving educational building sustainability from users’ perspectives. This study aims to determine an overall user perspective satisfaction scale (OUPS) for post-secondary educational buildings, determine the factors and sub-factors that affect users’ perspectives, and create a building sustainability platform for evaluating user satisfaction. The main goal of the developed model is to offer facility managers the current users’ perspectives on post-secondary educational buildings to improve sustainability from users’ perspectives. The results revealed a significant influence of thermal comfort (40%) and aesthetics (22%) on users’ perspectives. The developed model was validated by experts working in the facility management field and they acknowledged it as having good potential. This work first utilized the Fuzzy Analytic Network Process (FANP) modelling technique to determine weights for each factor and sub-factor and then employed the fuzzy expert system to develop an OUPS. Questionnaire responses and interviews with facility managers and users were used to develop these models for a case study of the M.B. building at Concordia University in Montreal, Quebec.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/16/9955/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14169955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/16/9955/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14169955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Abobakr Al-Sakkaf; Eslam Mohammed Abdelkader; Sherif Mahmoud; Ashutosh Bagchi;doi: 10.3390/su132112250
Heritage buildings are significant historical and architecture added value, which requires deep and precise preliminary brainstorming when considering upgrading or retrofitting these valuable buildings. In this study, we opted to highlight some passive design architecture interventions to improve the thermal comfort and the required cooling energy for buildings. The Murabba Palace in Riyadh was selected as a case study. DesignBuilder software was used to evaluate the energy performance of ten passive architectural design alternatives throughout different seasons in an attempt to improve the energy performance and thermal comfort of heritage buildings. The ten passive design scenarios encompassed double low-E glass, double reflected glass, double low-E glass and double wall with an air gap, double low-E glass and double wall with thermal insulation, double low-E glass and double wall with lightweight thermal insulation, double low-E glass and double wall with sprayed foam insulation, double reflected glass and double wall with an air gap, double reflected glass and double wall with thermal insulation, double reflected glass and double wall with lightweight thermal insulation, and double reflected glass and double wall with sprayed foam insulation. The results show that using double low-E glass and applying a double wall with polystyrene thermal insulation can enhance the thermal comfort inside the building and reduce the energy performance and CO2 emissions to 17% and 9%, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Eslam Mohammed Abdelkader; Abobakr Al-Sakkaf; Ghasan Alfalah; Nehal Elshaboury;doi: 10.3390/su14053013
There are a large number of dams throughout the United States, and a considerable portion of them are categorized as having high hazard potential. This state of affairs constitutes a challenge, especially when coupled with their rapid deterioration. As such, this research paper proposes an optimized data-driven model for the fast and efficient prediction of dam hazard potential. The proposed model is envisioned on two main components, namely model development and model assessment. In the first component, a hybridization of the differential evolution algorithm and regression tree to forecast downstream dam hazard potential is proposed. In this context, the differential evolution (DE) algorithm is deployed to: (1) automatically retrieve the optimal set of input features affecting dam hazard potential; and (2) amplify the search mechanism of regression tree (REGT) through optimizing its hyper parameters. As for the second component, the developed DE-REGT model is validated using four folds of comparative assessments to evaluate its prediction capabilities. In the first fold, the developed DE-REGT model is trialed against nine highly regarded machine learning and deep learning models. The second fold is designated to structure, an integrative ranking of the investigated data-driven models, counting on their scores in the performance evaluation metrics. The third fold is used to study the effectiveness of using differential evolution for the hyper parameter optimization of regression tree. The fourth fold aims at testing the usefulness of using differential evolution as a feature extractor algorithm. Performance comparative analysis demonstrated that the developed DE-REGT model outperformed the remainder of the data-driven models. It accomplished mean absolute percentage error, relative absolute error, mean absolute error, root squared error, root mean squared error and a Nash–Sutcliffe efficiency of 9.62%, 0.27, 0.17, 0.31, 0.41 and 0.74, respectively. Results also revealed that the developed model managed to perform better than other meta-heuristic-based regression tree models and classical feature extraction algorithms, exemplifying the appropriateness of using differential evolution for hyper parameter optimization and feature extraction. It can be argued that the developed model could assist policy makers in the prioritization of their maintenance management plans and reduce impairments caused by the failure or misoperation of dams.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3013/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3013/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Emerald Authors: Abobakr Al-Sakkaf; Ashutosh Bagchi; Tarek Zayed; Sherif Mahmoud;PurposeThe purpose of this research is to focus on the evaluation of heritage buildings' sustainability. BIM modeling was necessary for the design of the sustainability assessment model for Heritage Buildings (SAHB). Using ArchiCAD®, energy simulations were performed for two case studies (Murabba Palace, Saudi Arabia, and Grey Nuns Building, Canada), and the developed model was validated through sensitivity analysis.Design/methodology/approachHeritage buildings (HBs) are unique and must be preserved for future generations. This article focuses on a sustainability assessment model and rating scale for heritage buildings in light of the need for their conservation. Regional variations were considered in the model development to identify critical attributes whose corresponding weights were then determined by fuzzy logic. Data was collected via questionnaires completed by Saudi Arabian and Canadian experts, and Fuzzy TOPSIS was also applied to eliminate the uncertainties present when human opinions are involved.FindingsResults showed that regional variations were sufficiently addressed through the multi-level weight consideration in the proposed model. Comparing the nine identified factors that affect the sustainability of HBs, energy and indoor environmental quality were of equal weight in both case studies.Originality/valueThis study will be helpful for the design of a globally applicable sustainability assessment model for HBs. It will also enable decision-makers to prepare maintenance plans for HBs.
Smart and Sustainabl... arrow_drop_down Smart and Sustainable Built EnvironmentArticle . 2021 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/sasbe-03-2021-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smart and Sustainabl... arrow_drop_down Smart and Sustainable Built EnvironmentArticle . 2021 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/sasbe-03-2021-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Laith El-khateeb; Abobakr Al-Sakkaf; Abobakr Al-Sakkaf; Tarek Zayed; Eslam Mohammed Abdelkader;doi: 10.3390/su13137186
handle: 10397/91485
The condition of railway infrastructure, such as rails, ballasts and sleepers, should always be monitored and analyzed to ensure ride safety and quality for both passengers and freight. It is hard to assess the condition of railway infrastructure due to the existence of various components. The existing condition assessment models are mostly limited to only assess track geometry conditions and structural condition of the railway infrastructure. Therefore, the present research develops a defect-based structural and geometrical condition model of railway infrastructure. The defects of each component are identified and examined through literature and experts in the field. Two main inputs are used to develop the model: (1) the relative weight of importance for components, defects and their categories and (2) defects severities. To obtain the relative weights, the analytic network process (ANP) technique is adopted. Fuzzy logic is used to unify all the different defect criteria and to interpret the linguistic condition assessment grading scale to a numerical score. Hence, the technique for order preference by similarity to ideal Solution (TOPSIS) is used to integrate both weights and severities to determine the railway infrastructure condition. The developed model gives a detailed condition of the railway infrastructure by representing a three-level condition state, for defect categories, components and an overall railway infrastructure. The developed model is implemented to five case studies from Ontario, Canada. The developed model is validated by comparing its results with the real case studies results, which shows similar results, indicating the robustness of the developed model. This model helps in minimizing the inaccuracy of railway condition assessment through the application of severity, uncertainty mitigation and robust aggregation
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/13/7186/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91485Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/13/7186/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91485Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:IGI Global Authors: Abobakr Al-Sakkaf; Moaaz Elkabalawy; Eslam Mohammed Abdelkader;doi: 10.4018/ijsds.309120
Multi-criteria decision making (MCDM) on energy-efficient buildings has become essential in both the industry and academia as construction projects grow increasingly complex. With a prime goal of increasing its effectiveness, MCDM research has witnessed tremendous growth over the past three decades. Despite the necessity to monitor the research growth of a research topic to identify its trends and gaps, and hence shed light on research areas that warrant future research attention, there is a lack of systematic literature analysis in MCDM area. To fill this gap, this paper recruited a mixed-review method of scientometric and systematic reviews of 56 research papers on seven selected popular MCDM techniques published from 2010 to March 2021. The scientometric review identified the most prolific journals, keyword correlations, and geospatial connections between research countries in the MCDM area. On the other hand, the systematic review analysis showed that there are five main research topics in MCDM. Furthermore, the major approaches applied in MCDM research were investigated.
International Journa... arrow_drop_down International Journal of Strategic Decision SciencesArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4018/ijsds.309120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Strategic Decision SciencesArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4018/ijsds.309120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Ahmed Badawy; Abobakr Al-Sakkaf; Ghasan Alfalah; Eslam Mohammed Abdelkader; Tarek Zayed;handle: 10397/105258
The construction sector continues to experience significant challenges brought by new techniques and technologies. Hence, there is a dire need for construction companies to address critical issues concerning changing environmental conditions, construction innovations, market globalization and many other aspects, thereby enhancing their competitive edge. Thus, the primary goal for this research is to develop a multi-criteria decision making model that would consider and evaluate all essential factors in determining the competitiveness index of construction companies. In the developed model, three new pillars (3P) for competitiveness are introduced: (1) non-financial internal pillar; (2) non-financial external pillar; and (3) financial pillar. The 3P includes 6 categories and 26 factors that are defined and incorporated in the developed assessment model for the purpose of measuring the companies’ competitiveness. The weights for the identified factors are computed using fuzzy analytical network process (FANP) to diminish the uncertainty inherited within the judgment of the respondents. The weight of factors and their affiliated performance scores are used as an input for the preference ranking organization method for enrichment evaluation (PROMETHEE II) technique. In this regard, PROMETHEE II is undertaken as a ranking technique to prioritize any given construction company by determining its respective competitiveness index. The developed model is validated through five cases studies that reveal its potential of illustrating detailed analysis with respect to the competitive ability of construction companies. A sensitivity analysis is carried out to determine the most influential factors that affect the competitiveness of construction companies. It is anticipated that the developed evaluation model can be used in the decision-making process by all parties involved in construction projects. For instance, contractors can leverage the evaluation model in taking better decisions pertinent to the markup values. In addition, it can benefit employers in the evaluation process of contractors.
CivilEng arrow_drop_down CivilEngOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4109/3/4/49/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105258Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/civileng3040049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CivilEng arrow_drop_down CivilEngOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4109/3/4/49/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105258Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/civileng3040049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Other literature type , Journal 2020Publisher:Book Publisher International (a part of SCIENCEDOMAIN International) Authors: Eslam Mohammed Abdelkader; Abobakr Al-Sakkaf; Rasha Ahmed;The continuous increase in energy consumption has brought worldwide attention to its significant environmental effect, which is triggered by the increase in greenhouse gas emissions, global warming, and rapid climate change. As such, more energy efficient buildings are required to minimize the energy consumption of heating and cooling. The present study introduces a set of machine learning-based models to predict the heating and cooling loads in buildings. This includes back-propagation artificial neural network, generalized regression neural network, radial basis neural network, radial kernel support vector machines and ANOVA kernel support vector machines. The comparisons were conducted as per mean absolute percentage error (MAPE), mean absolute error (MAE), relative absolute error (RAE), root relative squared error (RRSE) and root-mean squared error (RMSE). The significances of the capacities of the machine learning models are evaluated using two-tailed student’s t-tests. Eventually, a holistic evaluation of the machine learning models is conducted using average ranking algorithm. Results demonstrate that the radial basis function network outperformed the afore-mentioned machine learning models significantly.
Decision Science Let... arrow_drop_down https://doi.org/10.9734/bpi/ca...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/castr/v6/2602f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Decision Science Let... arrow_drop_down https://doi.org/10.9734/bpi/ca...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/castr/v6/2602f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Ghasan Alfalah; Abobakr Al-Sakkaf; Eslam Mohammed Abdelkader; Tarek Zayed;doi: 10.3390/su14169955
Decreasing the impact of educational buildings on the environment is a primary concern of the sustainable building movement. However, limited research has centered on improving educational building sustainability from users’ perspectives. This study aims to determine an overall user perspective satisfaction scale (OUPS) for post-secondary educational buildings, determine the factors and sub-factors that affect users’ perspectives, and create a building sustainability platform for evaluating user satisfaction. The main goal of the developed model is to offer facility managers the current users’ perspectives on post-secondary educational buildings to improve sustainability from users’ perspectives. The results revealed a significant influence of thermal comfort (40%) and aesthetics (22%) on users’ perspectives. The developed model was validated by experts working in the facility management field and they acknowledged it as having good potential. This work first utilized the Fuzzy Analytic Network Process (FANP) modelling technique to determine weights for each factor and sub-factor and then employed the fuzzy expert system to develop an OUPS. Questionnaire responses and interviews with facility managers and users were used to develop these models for a case study of the M.B. building at Concordia University in Montreal, Quebec.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/16/9955/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14169955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/16/9955/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14169955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Abobakr Al-Sakkaf; Eslam Mohammed Abdelkader; Sherif Mahmoud; Ashutosh Bagchi;doi: 10.3390/su132112250
Heritage buildings are significant historical and architecture added value, which requires deep and precise preliminary brainstorming when considering upgrading or retrofitting these valuable buildings. In this study, we opted to highlight some passive design architecture interventions to improve the thermal comfort and the required cooling energy for buildings. The Murabba Palace in Riyadh was selected as a case study. DesignBuilder software was used to evaluate the energy performance of ten passive architectural design alternatives throughout different seasons in an attempt to improve the energy performance and thermal comfort of heritage buildings. The ten passive design scenarios encompassed double low-E glass, double reflected glass, double low-E glass and double wall with an air gap, double low-E glass and double wall with thermal insulation, double low-E glass and double wall with lightweight thermal insulation, double low-E glass and double wall with sprayed foam insulation, double reflected glass and double wall with an air gap, double reflected glass and double wall with thermal insulation, double reflected glass and double wall with lightweight thermal insulation, and double reflected glass and double wall with sprayed foam insulation. The results show that using double low-E glass and applying a double wall with polystyrene thermal insulation can enhance the thermal comfort inside the building and reduce the energy performance and CO2 emissions to 17% and 9%, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Eslam Mohammed Abdelkader; Abobakr Al-Sakkaf; Ghasan Alfalah; Nehal Elshaboury;doi: 10.3390/su14053013
There are a large number of dams throughout the United States, and a considerable portion of them are categorized as having high hazard potential. This state of affairs constitutes a challenge, especially when coupled with their rapid deterioration. As such, this research paper proposes an optimized data-driven model for the fast and efficient prediction of dam hazard potential. The proposed model is envisioned on two main components, namely model development and model assessment. In the first component, a hybridization of the differential evolution algorithm and regression tree to forecast downstream dam hazard potential is proposed. In this context, the differential evolution (DE) algorithm is deployed to: (1) automatically retrieve the optimal set of input features affecting dam hazard potential; and (2) amplify the search mechanism of regression tree (REGT) through optimizing its hyper parameters. As for the second component, the developed DE-REGT model is validated using four folds of comparative assessments to evaluate its prediction capabilities. In the first fold, the developed DE-REGT model is trialed against nine highly regarded machine learning and deep learning models. The second fold is designated to structure, an integrative ranking of the investigated data-driven models, counting on their scores in the performance evaluation metrics. The third fold is used to study the effectiveness of using differential evolution for the hyper parameter optimization of regression tree. The fourth fold aims at testing the usefulness of using differential evolution as a feature extractor algorithm. Performance comparative analysis demonstrated that the developed DE-REGT model outperformed the remainder of the data-driven models. It accomplished mean absolute percentage error, relative absolute error, mean absolute error, root squared error, root mean squared error and a Nash–Sutcliffe efficiency of 9.62%, 0.27, 0.17, 0.31, 0.41 and 0.74, respectively. Results also revealed that the developed model managed to perform better than other meta-heuristic-based regression tree models and classical feature extraction algorithms, exemplifying the appropriateness of using differential evolution for hyper parameter optimization and feature extraction. It can be argued that the developed model could assist policy makers in the prioritization of their maintenance management plans and reduce impairments caused by the failure or misoperation of dams.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3013/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3013/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Emerald Authors: Abobakr Al-Sakkaf; Ashutosh Bagchi; Tarek Zayed; Sherif Mahmoud;PurposeThe purpose of this research is to focus on the evaluation of heritage buildings' sustainability. BIM modeling was necessary for the design of the sustainability assessment model for Heritage Buildings (SAHB). Using ArchiCAD®, energy simulations were performed for two case studies (Murabba Palace, Saudi Arabia, and Grey Nuns Building, Canada), and the developed model was validated through sensitivity analysis.Design/methodology/approachHeritage buildings (HBs) are unique and must be preserved for future generations. This article focuses on a sustainability assessment model and rating scale for heritage buildings in light of the need for their conservation. Regional variations were considered in the model development to identify critical attributes whose corresponding weights were then determined by fuzzy logic. Data was collected via questionnaires completed by Saudi Arabian and Canadian experts, and Fuzzy TOPSIS was also applied to eliminate the uncertainties present when human opinions are involved.FindingsResults showed that regional variations were sufficiently addressed through the multi-level weight consideration in the proposed model. Comparing the nine identified factors that affect the sustainability of HBs, energy and indoor environmental quality were of equal weight in both case studies.Originality/valueThis study will be helpful for the design of a globally applicable sustainability assessment model for HBs. It will also enable decision-makers to prepare maintenance plans for HBs.
Smart and Sustainabl... arrow_drop_down Smart and Sustainable Built EnvironmentArticle . 2021 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/sasbe-03-2021-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smart and Sustainabl... arrow_drop_down Smart and Sustainable Built EnvironmentArticle . 2021 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/sasbe-03-2021-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Laith El-khateeb; Abobakr Al-Sakkaf; Abobakr Al-Sakkaf; Tarek Zayed; Eslam Mohammed Abdelkader;doi: 10.3390/su13137186
handle: 10397/91485
The condition of railway infrastructure, such as rails, ballasts and sleepers, should always be monitored and analyzed to ensure ride safety and quality for both passengers and freight. It is hard to assess the condition of railway infrastructure due to the existence of various components. The existing condition assessment models are mostly limited to only assess track geometry conditions and structural condition of the railway infrastructure. Therefore, the present research develops a defect-based structural and geometrical condition model of railway infrastructure. The defects of each component are identified and examined through literature and experts in the field. Two main inputs are used to develop the model: (1) the relative weight of importance for components, defects and their categories and (2) defects severities. To obtain the relative weights, the analytic network process (ANP) technique is adopted. Fuzzy logic is used to unify all the different defect criteria and to interpret the linguistic condition assessment grading scale to a numerical score. Hence, the technique for order preference by similarity to ideal Solution (TOPSIS) is used to integrate both weights and severities to determine the railway infrastructure condition. The developed model gives a detailed condition of the railway infrastructure by representing a three-level condition state, for defect categories, components and an overall railway infrastructure. The developed model is implemented to five case studies from Ontario, Canada. The developed model is validated by comparing its results with the real case studies results, which shows similar results, indicating the robustness of the developed model. This model helps in minimizing the inaccuracy of railway condition assessment through the application of severity, uncertainty mitigation and robust aggregation
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/13/7186/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91485Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/13/7186/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91485Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu