- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Germany, NetherlandsPublisher:Public Library of Science (PLoS) Authors: Shariatinajafabadi, Mitra; Wang, Tiejun; Skidmore, Andrew K.; Toxopeus, Albertus G.; +6 AuthorsShariatinajafabadi, Mitra; Wang, Tiejun; Skidmore, Andrew K.; Toxopeus, Albertus G.; Kölzsch, Andrea; Nolet, Bart A.; Exo, Klaus-Michael; Griffin, Larry; Stahl, Julia; Cabot, David;pmid: 25248162
pmc: PMC4172753
Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI) time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI), has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7). Data were collected over three years (2008-2010). Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%), while the Greenland geese followed an earlier stage (GWI 20-40%). Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration), thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.
PLoS ONE arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Wiley Xinping Ye; Yiwen Sun; Andrew K. Skidmore; Tiejun Wang; Changqing Ding; Fangyuan Yu;pmid: 34496146
AbstractUnderstanding how species’ ecological niches adapt to environmental changes through time is critical for predicting the effect of future global change on endangered species. Yet few studies have incorporated knowledge of past niche shifting into the assessment of species’ future fate in a changing world. In this study, we integrated the ecological niche dynamics into the species distribution modeling of the Asian crested ibis (Nipponia nippon) in East Asia. Specifically, we compared historical and present ecological niches of crested ibis in four‐dimensional environmental space based on species occurrence and environmental data. We then employed a multi‐temporal ecological niche model to estimate the potential geographical distribution of crested ibis under future climate and land‐use changes. Our results show that crested ibis retained similar though not identical ecological niches over time. Compared to the historical baseline range, the current suitable habitat for crested ibis has been reduced by 39.6%. The effects of human activity outweigh those of climate change regarding the distribution of crested ibis. We conclude that the ecological niche of crested ibis was tended to be conservative, and future potentially suitable habitat may encounter northeastward and northwestward shift, and possibly expand by 18.7% referred to the historical range. The findings of our study are of clear importance for the conservation and successful reintroduction of crested ibis in East Asia.
Integrative Zoology arrow_drop_down Integrative ZoologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1749-4877.12581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Integrative Zoology arrow_drop_down Integrative ZoologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1749-4877.12581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Fangyuan Yu; Tiejun Wang; Thomas A. Groen; Andrew K. Skidmore; Xuefei Yang; Keping Ma; Zhifeng Wu;pmid: 31096381
Biodiversity loss and variation in species responses to climate and land use change have been found across broad taxonomic groups. However, whether species from the same taxonomic group with distinct geographical ranges will respond differently is poorly understood. The aim of this study is to predict the potential impacts of future climate and land use change on the distribution of narrow- and wide-ranging Rhododendron species, and estimate their relative contribution in China. We applied the presence-only ecological niche model MaxEnt to predict the distribution of 10 narrow-ranging and 10 wide-ranging Rhododendron species for the year 2070, using three general circulation models and three scenarios of climate and land use change. We measured the predicted distribution change of each species using change ratio, distance and direction of core range shifts, and niche overlap using Schoener's D. We found that the distribution areas of six narrow-ranging species would decrease, of which one species would go extinct. The remaining four narrow-ranging species would experience range expansion. Distribution of all the wide-ranging Rhododendron species would decrease. All Rhododendrons will shift to the northwest. We conclude that Rhododendron species generally will be negatively affected by the climatic and land use change expected in 2070 from the three scenarios evaluated in this study, but some narrow-ranging species may be positively influenced. Narrow-ranging Rhododendron species are more vulnerable compared to wide-ranging Rhododendron species. This study demonstrated that the effects of climate and land use change on alpine and subalpine plant species is species-specific, thereby strengthening our understanding of the impacts of climate and land use change on plant distribution.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Andrew K. Skidmore; Andrew K. Skidmore; Arnold J. H. van Vliet; Maarten van Aalst; +4 AuthorsAndrew K. Skidmore; Andrew K. Skidmore; Arnold J. H. van Vliet; Maarten van Aalst; Maarten van Aalst; Tiejun Wang; Peng Jia; Peng Jia;pmid: 32055048
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0598-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0598-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Xinping Ye; Xiaoping Yu; Changqing Yu; Aletai Tayibazhaer; Fujun Xu; Andrew K. Skidmore; Tiejun Wang;pmid: 28866405
Dryland biodiversity plays important roles in the fight against desertification and poverty, but is highly vulnerable to the impacts of environmental change. However, little research has been conducted on dual pressure from climate and land cover changes on biodiversity in arid and semi-arid environments. Concequntly, it is crutial to understand the potential impacts of future climate and land cover changes on dryland biodiversity. Here, using the Chinese Altai Mountains as a case study area, we predicted the future spatial distributions and local assemblages of nine threatened mammal species under projected climate and land cover change scenarios for the period 2010-2050. The results show that remarkable declines in mammal species richness as well as high rates of species turnover are seen to occur across large areas in the Chinese Altai Mountains, highlighting an urgent need for developing protection strategies for areas outside of current nature reserve network. The selected mammals are predicted to lose more than 50% of their current ranges on average, which is much higher than species' range gains (around 15%) under future climate and land cover changes. Most of the species are predicted to contract their ranges while moving eastwards and to higher altitudes, raising the need for establishing cross-border migration pathways for species. Furthermore, the inclusion of land cover changes had notable effects on projected range shifts of individual species under climate changes, demonstrating that land cover changes should be incorporated into the assessment of future climate impacts to facilitate biodiversity conservation in arid and semi-arid environments.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2017Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2017Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Funded by:NSERCNSERCChaofan Li; Richard Fischer; Yanbin Jiang; Tiejun Wang; Qifei Han;A number of studies have suggested that the duration of a growing season has significantly lengthened during the past decades, but the connections between phenology variability and the terrestrial carbon cycle are far from clear. In this study, we used a process-based ecosystem simulation model, BIOME-BGC, to investigate spatio-temporal variation in phenology and its impacts on carbon fluxes in European forests during 1999–2013. We found that the start of vegetation growing season advanced on average by 0.22 ± 0.55 d yr−1 and the length of growing season extended on average by 0.42 ± 0.86 d yr−1 for the period 1999–2013. Model simulations indicated that European forests acted as a weak carbon (C) sink with a mean value of 0.27 Tg C yr−1 (1 Tg = 1012 g) during 1999–2013. Phenological variation lowered the net ecosystem exchange (NEE) by 3.99 Tg C for the same period, and this could be explained by the opposing effect of enhanced heterotrophic respiration directly induced by the extension of growing season. NEE effects were negatively correlated with heterotrophic respiration (R2 = 0.43), and one Tg increase in the heterotrophic respiration decreased NEE by 2.28 Tg C. The implications for the practical management is that a climate change will result in a significant change of selection pressure, and that phenology is a major aspect of tree functioning that will need adjusting for a future climate.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Germany, NetherlandsPublisher:Public Library of Science (PLoS) Authors: Shariatinajafabadi, Mitra; Wang, Tiejun; Skidmore, Andrew K.; Toxopeus, Albertus G.; +6 AuthorsShariatinajafabadi, Mitra; Wang, Tiejun; Skidmore, Andrew K.; Toxopeus, Albertus G.; Kölzsch, Andrea; Nolet, Bart A.; Exo, Klaus-Michael; Griffin, Larry; Stahl, Julia; Cabot, David;pmid: 25248162
pmc: PMC4172753
Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI) time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI), has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7). Data were collected over three years (2008-2010). Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%), while the Greenland geese followed an earlier stage (GWI 20-40%). Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration), thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.
PLoS ONE arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Wiley Xinping Ye; Yiwen Sun; Andrew K. Skidmore; Tiejun Wang; Changqing Ding; Fangyuan Yu;pmid: 34496146
AbstractUnderstanding how species’ ecological niches adapt to environmental changes through time is critical for predicting the effect of future global change on endangered species. Yet few studies have incorporated knowledge of past niche shifting into the assessment of species’ future fate in a changing world. In this study, we integrated the ecological niche dynamics into the species distribution modeling of the Asian crested ibis (Nipponia nippon) in East Asia. Specifically, we compared historical and present ecological niches of crested ibis in four‐dimensional environmental space based on species occurrence and environmental data. We then employed a multi‐temporal ecological niche model to estimate the potential geographical distribution of crested ibis under future climate and land‐use changes. Our results show that crested ibis retained similar though not identical ecological niches over time. Compared to the historical baseline range, the current suitable habitat for crested ibis has been reduced by 39.6%. The effects of human activity outweigh those of climate change regarding the distribution of crested ibis. We conclude that the ecological niche of crested ibis was tended to be conservative, and future potentially suitable habitat may encounter northeastward and northwestward shift, and possibly expand by 18.7% referred to the historical range. The findings of our study are of clear importance for the conservation and successful reintroduction of crested ibis in East Asia.
Integrative Zoology arrow_drop_down Integrative ZoologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1749-4877.12581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Integrative Zoology arrow_drop_down Integrative ZoologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1749-4877.12581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Fangyuan Yu; Tiejun Wang; Thomas A. Groen; Andrew K. Skidmore; Xuefei Yang; Keping Ma; Zhifeng Wu;pmid: 31096381
Biodiversity loss and variation in species responses to climate and land use change have been found across broad taxonomic groups. However, whether species from the same taxonomic group with distinct geographical ranges will respond differently is poorly understood. The aim of this study is to predict the potential impacts of future climate and land use change on the distribution of narrow- and wide-ranging Rhododendron species, and estimate their relative contribution in China. We applied the presence-only ecological niche model MaxEnt to predict the distribution of 10 narrow-ranging and 10 wide-ranging Rhododendron species for the year 2070, using three general circulation models and three scenarios of climate and land use change. We measured the predicted distribution change of each species using change ratio, distance and direction of core range shifts, and niche overlap using Schoener's D. We found that the distribution areas of six narrow-ranging species would decrease, of which one species would go extinct. The remaining four narrow-ranging species would experience range expansion. Distribution of all the wide-ranging Rhododendron species would decrease. All Rhododendrons will shift to the northwest. We conclude that Rhododendron species generally will be negatively affected by the climatic and land use change expected in 2070 from the three scenarios evaluated in this study, but some narrow-ranging species may be positively influenced. Narrow-ranging Rhododendron species are more vulnerable compared to wide-ranging Rhododendron species. This study demonstrated that the effects of climate and land use change on alpine and subalpine plant species is species-specific, thereby strengthening our understanding of the impacts of climate and land use change on plant distribution.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Andrew K. Skidmore; Andrew K. Skidmore; Arnold J. H. van Vliet; Maarten van Aalst; +4 AuthorsAndrew K. Skidmore; Andrew K. Skidmore; Arnold J. H. van Vliet; Maarten van Aalst; Maarten van Aalst; Tiejun Wang; Peng Jia; Peng Jia;pmid: 32055048
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0598-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0598-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Xinping Ye; Xiaoping Yu; Changqing Yu; Aletai Tayibazhaer; Fujun Xu; Andrew K. Skidmore; Tiejun Wang;pmid: 28866405
Dryland biodiversity plays important roles in the fight against desertification and poverty, but is highly vulnerable to the impacts of environmental change. However, little research has been conducted on dual pressure from climate and land cover changes on biodiversity in arid and semi-arid environments. Concequntly, it is crutial to understand the potential impacts of future climate and land cover changes on dryland biodiversity. Here, using the Chinese Altai Mountains as a case study area, we predicted the future spatial distributions and local assemblages of nine threatened mammal species under projected climate and land cover change scenarios for the period 2010-2050. The results show that remarkable declines in mammal species richness as well as high rates of species turnover are seen to occur across large areas in the Chinese Altai Mountains, highlighting an urgent need for developing protection strategies for areas outside of current nature reserve network. The selected mammals are predicted to lose more than 50% of their current ranges on average, which is much higher than species' range gains (around 15%) under future climate and land cover changes. Most of the species are predicted to contract their ranges while moving eastwards and to higher altitudes, raising the need for establishing cross-border migration pathways for species. Furthermore, the inclusion of land cover changes had notable effects on projected range shifts of individual species under climate changes, demonstrating that land cover changes should be incorporated into the assessment of future climate impacts to facilitate biodiversity conservation in arid and semi-arid environments.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2017Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2017Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Funded by:NSERCNSERCChaofan Li; Richard Fischer; Yanbin Jiang; Tiejun Wang; Qifei Han;A number of studies have suggested that the duration of a growing season has significantly lengthened during the past decades, but the connections between phenology variability and the terrestrial carbon cycle are far from clear. In this study, we used a process-based ecosystem simulation model, BIOME-BGC, to investigate spatio-temporal variation in phenology and its impacts on carbon fluxes in European forests during 1999–2013. We found that the start of vegetation growing season advanced on average by 0.22 ± 0.55 d yr−1 and the length of growing season extended on average by 0.42 ± 0.86 d yr−1 for the period 1999–2013. Model simulations indicated that European forests acted as a weak carbon (C) sink with a mean value of 0.27 Tg C yr−1 (1 Tg = 1012 g) during 1999–2013. Phenological variation lowered the net ecosystem exchange (NEE) by 3.99 Tg C for the same period, and this could be explained by the opposing effect of enhanced heterotrophic respiration directly induced by the extension of growing season. NEE effects were negatively correlated with heterotrophic respiration (R2 = 0.43), and one Tg increase in the heterotrophic respiration decreased NEE by 2.28 Tg C. The implications for the practical management is that a climate change will result in a significant change of selection pressure, and that phenology is a major aspect of tree functioning that will need adjusting for a future climate.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu