
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Phenological variation decreased carbon uptake in European forests during 1999–2013

A number of studies have suggested that the duration of a growing season has significantly lengthened during the past decades, but the connections between phenology variability and the terrestrial carbon cycle are far from clear. In this study, we used a process-based ecosystem simulation model, BIOME-BGC, to investigate spatio-temporal variation in phenology and its impacts on carbon fluxes in European forests during 1999–2013. We found that the start of vegetation growing season advanced on average by 0.22 ± 0.55 d yr−1 and the length of growing season extended on average by 0.42 ± 0.86 d yr−1 for the period 1999–2013. Model simulations indicated that European forests acted as a weak carbon (C) sink with a mean value of 0.27 Tg C yr−1 (1 Tg = 1012 g) during 1999–2013. Phenological variation lowered the net ecosystem exchange (NEE) by 3.99 Tg C for the same period, and this could be explained by the opposing effect of enhanced heterotrophic respiration directly induced by the extension of growing season. NEE effects were negatively correlated with heterotrophic respiration (R2 = 0.43), and one Tg increase in the heterotrophic respiration decreased NEE by 2.28 Tg C. The implications for the practical management is that a climate change will result in a significant change of selection pressure, and that phenology is a major aspect of tree functioning that will need adjusting for a future climate.
- Nanjing University of Information Science and Technology China (People's Republic of)
- University of Twente Netherlands
- Nanjing University of Information Science and Technology China (People's Republic of)
- Huazhong Agricultural University China (People's Republic of)
- Huazhong Agricultural University China (People's Republic of)
Monitoring, Policy and Law, NDVI, Forestry, Remote sensing, 22/4 OA procedure, Management, Phenology, ITC-ISI-JOURNAL-ARTICLE, SDG 13 - Climate Action, Climate change, Net ecosystem exchange, SDG 15 - Life on Land, Nature and Landscape Conservation
Monitoring, Policy and Law, NDVI, Forestry, Remote sensing, 22/4 OA procedure, Management, Phenology, ITC-ISI-JOURNAL-ARTICLE, SDG 13 - Climate Action, Climate change, Net ecosystem exchange, SDG 15 - Life on Land, Nature and Landscape Conservation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
