- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; +3 AuthorsNagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; Mohamed Abuagreb; Usama Khaled; Mohamed Metwally Mahmoud;doi: 10.3390/su151813716
The integration of clean energy sources (CESs) into modern power systems has been studied using various power converter topologies. The challenges of integrating various CESs are facilitated by the proper design of multi-port power converter (MPPC) architecture. In this study, a brand-new two-stage MPPC is suggested as a solution to the intermittent nature and slow response (SR) of CESs. The suggested system combines a DC\DC and a DC\AC converter and storage unit, and the suggested circuit additionally incorporates a number of CESs (PV\wind\fuel cell (FC)). This article discusses the power management and control technique for an integrated four-port MPPC that links three input ports (PV, wind, and FC), a bidirectional battery port, and an isolated output port. One of the recent optimization techniques (Harris Hawk’s algorithm) is applied to optimize the system’s controller gains. By intelligently combining CESs with complementary characteristics, the adverse effects of intermittency are significantly mitigated, leading to an overall enhancement in system resilience and efficiency. Furthermore, integrating CESs with storage units not only addresses SR challenges but also effectively combats intermittent energy supply. The proposed system exhibits improved dynamic capabilities, allowing it to efficiently distribute excess energy to the load or absorb surplus energy from external sources. This dual functionality not only optimizes system operation but also contributes to a reduction in system size and cost, concurrently enhancing reliability. A comprehensive investigation into operational principles and meticulous design considerations are provided, elucidating the intricate mechanics of the suggested MPPC system. Employing MATLAB/Simulink, the proposed architecture and its control mechanisms undergo rigorous evaluation, affirming the feasibility and efficacy of this innovative system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; +3 AuthorsNagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; Mohamed Abuagreb; Usama Khaled; Mohamed Metwally Mahmoud;doi: 10.3390/su151813716
The integration of clean energy sources (CESs) into modern power systems has been studied using various power converter topologies. The challenges of integrating various CESs are facilitated by the proper design of multi-port power converter (MPPC) architecture. In this study, a brand-new two-stage MPPC is suggested as a solution to the intermittent nature and slow response (SR) of CESs. The suggested system combines a DC\DC and a DC\AC converter and storage unit, and the suggested circuit additionally incorporates a number of CESs (PV\wind\fuel cell (FC)). This article discusses the power management and control technique for an integrated four-port MPPC that links three input ports (PV, wind, and FC), a bidirectional battery port, and an isolated output port. One of the recent optimization techniques (Harris Hawk’s algorithm) is applied to optimize the system’s controller gains. By intelligently combining CESs with complementary characteristics, the adverse effects of intermittency are significantly mitigated, leading to an overall enhancement in system resilience and efficiency. Furthermore, integrating CESs with storage units not only addresses SR challenges but also effectively combats intermittent energy supply. The proposed system exhibits improved dynamic capabilities, allowing it to efficiently distribute excess energy to the load or absorb surplus energy from external sources. This dual functionality not only optimizes system operation but also contributes to a reduction in system size and cost, concurrently enhancing reliability. A comprehensive investigation into operational principles and meticulous design considerations are provided, elucidating the intricate mechanics of the suggested MPPC system. Employing MATLAB/Simulink, the proposed architecture and its control mechanisms undergo rigorous evaluation, affirming the feasibility and efficacy of this innovative system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:MDPI AG Authors: Mohammed Abbas; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;Currently, in modern wind farms, the doubly fed induction generator (DFIG) is commonly adopted for its ability to operate at variable wind speeds. Generally, this type of wind turbine is controlled by using two converters, one on the rotor side (RSC) and the other one on the grid side (GSC). However, the control of these two converters depends mainly on current sensors measurements. Nevertheless, in the case of sensor failure, control stability may be compromised, leading to serious malfunctions in the wind turbine system. Therefore, in this article, we will present an innovative diagnostic approach to detect, locate, and isolate the single and/or multiple real-phase current sensors in both converters. The suggested approach uses an extended Kalman filter (EKF) bank structured according to a generalized observer scheme (GOS) and relies on a nonlinear model for the RSC and a linear model for the GSC. The EKF estimates the currents in the converters, which are then compared to sensor measurements to generate residuals. These residuals are then processed in the localization, isolation, and decision blocks to precisely identify faulty sensors. The obtained results confirm the effectiveness of this approach to identify faulty sensors in the abc phases. It also demonstrates its ability to overcome the nonlinearity induced by wind fluctuations, as well as resolves the coupling issue between currents in the fault period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:MDPI AG Authors: Mohammed Abbas; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;Currently, in modern wind farms, the doubly fed induction generator (DFIG) is commonly adopted for its ability to operate at variable wind speeds. Generally, this type of wind turbine is controlled by using two converters, one on the rotor side (RSC) and the other one on the grid side (GSC). However, the control of these two converters depends mainly on current sensors measurements. Nevertheless, in the case of sensor failure, control stability may be compromised, leading to serious malfunctions in the wind turbine system. Therefore, in this article, we will present an innovative diagnostic approach to detect, locate, and isolate the single and/or multiple real-phase current sensors in both converters. The suggested approach uses an extended Kalman filter (EKF) bank structured according to a generalized observer scheme (GOS) and relies on a nonlinear model for the RSC and a linear model for the GSC. The EKF estimates the currents in the converters, which are then compared to sensor measurements to generate residuals. These residuals are then processed in the localization, isolation, and decision blocks to precisely identify faulty sensors. The obtained results confirm the effectiveness of this approach to identify faulty sensors in the abc phases. It also demonstrates its ability to overcome the nonlinearity induced by wind fluctuations, as well as resolves the coupling issue between currents in the fault period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Authors: Abdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; +3 AuthorsAbdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; Mohamed Metwally Mahmoud; Sid Ahmed El Mehdi Ardjoun; Aml Abubakr Tantawy;In Egypt, the climate has a direct impact on the dried date fruit production. The traditional drying method or open sun drying (OSD) leads to pollution of the final product caused by sand-laden winds, rain, or animals and harmful insects, etc. This study is aimed at designing, implementing, and experimentally validating a solar dryer based on IoT technology and integrated with a PV system in Aswan, Egypt. The purpose of the dryer is to monitor and control the quality of the three most popular date fruit varieties and determine the most effective drying method, with an algorithm that operates the system automatically for optimal performance and high-quality products. The automatic solar dryer (ASD) significantly affects the final moisture content and color characteristics and reaches the equilibrium moisture content (EMC) at a faster rate for dried date samples compared to the OSD. The drying rate of ASD was 29.03% (Sakkoti), 31.04% (Malkabi), and 25.49% (Gondaila) higher than OSD. Also, the dried date fruit samples reached EMC on the ASD after 8 days for both Malkabi and Gondaila and 9 days for Sakkoti, while it took 14 to 15 days on OSD. The maximum open circuit voltage V oc , short circuit current I sc , and output power P output were 41.70 V, 8.84 A, and 365.09 W, respectively. All values of total color change ( Δ E ∗ ) after open-air drying of dry date varieties were higher than solar drying for both drying systems. This study can be then more helpful for producers of dried foods.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Authors: Abdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; +3 AuthorsAbdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; Mohamed Metwally Mahmoud; Sid Ahmed El Mehdi Ardjoun; Aml Abubakr Tantawy;In Egypt, the climate has a direct impact on the dried date fruit production. The traditional drying method or open sun drying (OSD) leads to pollution of the final product caused by sand-laden winds, rain, or animals and harmful insects, etc. This study is aimed at designing, implementing, and experimentally validating a solar dryer based on IoT technology and integrated with a PV system in Aswan, Egypt. The purpose of the dryer is to monitor and control the quality of the three most popular date fruit varieties and determine the most effective drying method, with an algorithm that operates the system automatically for optimal performance and high-quality products. The automatic solar dryer (ASD) significantly affects the final moisture content and color characteristics and reaches the equilibrium moisture content (EMC) at a faster rate for dried date samples compared to the OSD. The drying rate of ASD was 29.03% (Sakkoti), 31.04% (Malkabi), and 25.49% (Gondaila) higher than OSD. Also, the dried date fruit samples reached EMC on the ASD after 8 days for both Malkabi and Gondaila and 9 days for Sakkoti, while it took 14 to 15 days on OSD. The maximum open circuit voltage V oc , short circuit current I sc , and output power P output were 41.70 V, 8.84 A, and 365.09 W, respectively. All values of total color change ( Δ E ∗ ) after open-air drying of dry date varieties were higher than solar drying for both drying systems. This study can be then more helpful for producers of dried foods.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Authors: Nagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; +4 AuthorsNagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; Sid Ahmed El Mehdi Ardjoun; Mohamed I. Mosaad; Ammar M. Hassan; H. Abdelfattah;pmid: 37922271
pmc: PMC10624298
Solar energy, a prominent renewable resource, relies on photovoltaic systems (PVS) to capture energy efficiently. The challenge lies in maximizing power generation, which fluctuates due to changing environmental conditions like irradiance and temperature. Maximum Power Point Tracking (MPPT) techniques have been developed to optimize PVS output. Among these, the incremental conductance (INC) method is widely recognized. However, adapting INC to varying environmental conditions remains a challenge. This study introduces an innovative approach to adaptive MPPT for grid-connected PVS, enhancing classical INC by integrating a PID controller updated through a fuzzy self-tuning controller (INC-FST). INC-FST dynamically regulates the boost converter signal, connecting the PVS’s DC output to the grid-connected inverter. A comprehensive evaluation, comparing the proposed adaptive MPPT technique (INC-FST) with conventional MPPT methods such as INC, Perturb & Observe (P&O), and INC Fuzzy Logic (INC-FL), was conducted. Metrics assessed include current, voltage, efficiency, power, and DC bus voltage under different climate scenarios. The proposed MPPT-INC-FST algorithm demonstrated superior efficiency, achieving 99.80%, 99.76%, and 99.73% for three distinct climate scenarios. Furthermore, the comparative analysis highlighted its precision in terms of control indices, minimizing overshoot, reducing rise time, and maximizing PVS power output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Authors: Nagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; +4 AuthorsNagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; Sid Ahmed El Mehdi Ardjoun; Mohamed I. Mosaad; Ammar M. Hassan; H. Abdelfattah;pmid: 37922271
pmc: PMC10624298
Solar energy, a prominent renewable resource, relies on photovoltaic systems (PVS) to capture energy efficiently. The challenge lies in maximizing power generation, which fluctuates due to changing environmental conditions like irradiance and temperature. Maximum Power Point Tracking (MPPT) techniques have been developed to optimize PVS output. Among these, the incremental conductance (INC) method is widely recognized. However, adapting INC to varying environmental conditions remains a challenge. This study introduces an innovative approach to adaptive MPPT for grid-connected PVS, enhancing classical INC by integrating a PID controller updated through a fuzzy self-tuning controller (INC-FST). INC-FST dynamically regulates the boost converter signal, connecting the PVS’s DC output to the grid-connected inverter. A comprehensive evaluation, comparing the proposed adaptive MPPT technique (INC-FST) with conventional MPPT methods such as INC, Perturb & Observe (P&O), and INC Fuzzy Logic (INC-FL), was conducted. Metrics assessed include current, voltage, efficiency, power, and DC bus voltage under different climate scenarios. The proposed MPPT-INC-FST algorithm demonstrated superior efficiency, achieving 99.80%, 99.76%, and 99.73% for three distinct climate scenarios. Furthermore, the comparative analysis highlighted its precision in terms of control indices, minimizing overshoot, reducing rise time, and maximizing PVS power output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:MDPI AG Authors: Mohammed Zerdani; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;doi: 10.3390/sym16040395
Currently, power trains based on an Open-End Winding Induction Machine fed by a Dual Inverter (DI-OEWIM) are attracting a great deal of interest in various modern industrial applications. However, applying symmetrical control to this system (DI-OEWIM), which is symmetrical in nature, will lead to malfunction. Therefore, the objective of this paper is to explore the influence of asymmetric control on the performance of this system. The principle of this study is to create an asymmetrical control by integrating a phase-shift angle in the Space Vector Pulse Width Modulation (SVPWM) strategy. We then evaluate the impact of these angles on various performances, such as the Total Harmonic Distortion (THD), power losses, Common Mode Voltage (CMV), Zero-Sequence Voltage (ZSV), rotation speed and torque ripple of this system. This study was carried out in the Matlab/Simulink environment and was validated experimentally using the dSPACE 1104 board. The results show that the different angles have significant effects on the overall performance of this system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:MDPI AG Authors: Mohammed Zerdani; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;doi: 10.3390/sym16040395
Currently, power trains based on an Open-End Winding Induction Machine fed by a Dual Inverter (DI-OEWIM) are attracting a great deal of interest in various modern industrial applications. However, applying symmetrical control to this system (DI-OEWIM), which is symmetrical in nature, will lead to malfunction. Therefore, the objective of this paper is to explore the influence of asymmetric control on the performance of this system. The principle of this study is to create an asymmetrical control by integrating a phase-shift angle in the Space Vector Pulse Width Modulation (SVPWM) strategy. We then evaluate the impact of these angles on various performances, such as the Total Harmonic Distortion (THD), power losses, Common Mode Voltage (CMV), Zero-Sequence Voltage (ZSV), rotation speed and torque ripple of this system. This study was carried out in the Matlab/Simulink environment and was validated experimentally using the dSPACE 1104 board. The results show that the different angles have significant effects on the overall performance of this system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:ASME International Authors: Ardjoun, Sid Ahmed El Mehdi; Denaï, Mouloud; Chafouk, Houcine;doi: 10.1115/1.4055099
Abstract Distributed solar photovoltaic (PV) generation is growing rapidly around the world. However, unlike conventional synchronous generators, PV systems do not have any rotating masses to deliver inertia to support the grid frequency. The paper presents a detailed modeling of a new converter configuration and control scheme to enable PV systems to adjust the real power output and contribute to the grid frequency regulation. The proposed topology consists of a two-stage converter without an energy storage system. A DC–DC buck converter is used instead of a DC–DC boost converter, and this simplifies the control scheme which aims to keep the PV generator power in the right side of the P–V characteristic and can be varied in the range from near-zero to the maximum power. The proposed control scheme combines robust and nonlinear sliding mode theory with fuzzy logic. The PV system is connected to a low inertia microgrid and its ability to contribute to frequency regulation is assessed for different controls. The proposed converter and its control are validated experimentally on a 3-kW PV system using OPAL-RT real-time simulator and tested under varying temperature, solar irradiance, and partial shading conditions. The results show that with the proposed circuit, the operating point is always on the right side of the P–V characteristic irrespective of the operating mode. Furthermore, the proposed control scheme provides PV generators with a fast and effective inertial response to support the grid and enhance its stability during contingencies.
Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:ASME International Authors: Ardjoun, Sid Ahmed El Mehdi; Denaï, Mouloud; Chafouk, Houcine;doi: 10.1115/1.4055099
Abstract Distributed solar photovoltaic (PV) generation is growing rapidly around the world. However, unlike conventional synchronous generators, PV systems do not have any rotating masses to deliver inertia to support the grid frequency. The paper presents a detailed modeling of a new converter configuration and control scheme to enable PV systems to adjust the real power output and contribute to the grid frequency regulation. The proposed topology consists of a two-stage converter without an energy storage system. A DC–DC buck converter is used instead of a DC–DC boost converter, and this simplifies the control scheme which aims to keep the PV generator power in the right side of the P–V characteristic and can be varied in the range from near-zero to the maximum power. The proposed control scheme combines robust and nonlinear sliding mode theory with fuzzy logic. The PV system is connected to a low inertia microgrid and its ability to contribute to frequency regulation is assessed for different controls. The proposed converter and its control are validated experimentally on a 3-kW PV system using OPAL-RT real-time simulator and tested under varying temperature, solar irradiance, and partial shading conditions. The results show that with the proposed circuit, the operating point is always on the right side of the P–V characteristic irrespective of the operating mode. Furthermore, the proposed control scheme provides PV generators with a fast and effective inertial response to support the grid and enhance its stability during contingencies.
Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mohamed H. Hassan; Ehab Mahmoud Mohamed; Salah Kamel; Sid Ahmed El Mehdi Ardjoun;Over the past ten years, global electricity networks have undergone rapid advancements, primarily driven by the widespread adoption of renewable energy resources (RES). While these sources have accompanied in a gathering of advantages, such as cost-effective operation of wind and solar photovoltaic (PV) installations and the mitigation of environmental hazards linked with traditional power sources, they have also introduced a host of challenges to planning and operation of power systems. Also, Plug-in electric vehicles (PEVs) stand out as a highly promising technology for reducing carbon emissions in the transportation sector, aligning with the global Net-zero target. The standard optimal power flow (OPF) problem, which is naturally nonlinear, has become even more complex with the addition of renewable energy sources and plug-in electric vehicles along with traditional thermal power generators. This increased complexity comes from the unpredictable and intermittent nature of these new resources. Monte Carlo techniques are used to estimate the production costs of renewable energy sources and plug-in electric vehicles (PEVs) and analyze their viability. The uncertainty of the renewable sources and PEVs is modeled using Weibull, lognormal, and normal probability distribution functions (PDFs). The comprehensive OPF, incorporating renewable energy components and PEVs, is cast as a single objective problem encompassing various objectives, such as decreasing fuel costs, total emissions, voltage deviations, and real transmission losses. This research shares a common objective by introducing a novel hybrid metaheuristic optimization algorithm (MRGTO) to address the OPF challenge. Additionally, the study explores the impact of renewable energy resources and Vehicle-to-Grid (V2G) on the stochastic OPF problem. The MRGTO employs artificial gorilla troops optimizer (GTO) with manta ray foraging optimization (MRFO) algorithm to achieve the optimal results for the OPF problem with stochastic RES and V2G. The developed technique is expected to increase the solution accuracy through increasing the solution diversity through an optimization procedure. Initial assessments are executed on benchmark functions. After that, a combined model of wind and PV-integrated IEEE 30-bus system are executed by the proposed MRGTO algorithm and other well-known optimization algorithms. Additionally, the effectiveness of the proposed method is assessed using the IEEE 30-bus test system under different scenarios. The evaluations have shown the proposed MRGTO technique to be superior at attainment a best solution for the OPF problem considering stochastic wind and PV power and V2G. Moreover, the obtained solutions confirmed the MRGTO technique would be more effective in optimization with quicker convergence rate, and higher convergence precision. After testing, the effectiveness of the MRGTO algorithm has been found to be much robust than the conventional artificial gorilla troops optimizer, manta ray foraging optimization, and other well-known published heuristics, metaheuristics, and hybrid optimization techniques.INDEX TERMS Optimal power flow, plug-in electric vehicle, renewable energy sources, V2G, artificial gorilla troops optimizer, manta ray foraging optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mohamed H. Hassan; Ehab Mahmoud Mohamed; Salah Kamel; Sid Ahmed El Mehdi Ardjoun;Over the past ten years, global electricity networks have undergone rapid advancements, primarily driven by the widespread adoption of renewable energy resources (RES). While these sources have accompanied in a gathering of advantages, such as cost-effective operation of wind and solar photovoltaic (PV) installations and the mitigation of environmental hazards linked with traditional power sources, they have also introduced a host of challenges to planning and operation of power systems. Also, Plug-in electric vehicles (PEVs) stand out as a highly promising technology for reducing carbon emissions in the transportation sector, aligning with the global Net-zero target. The standard optimal power flow (OPF) problem, which is naturally nonlinear, has become even more complex with the addition of renewable energy sources and plug-in electric vehicles along with traditional thermal power generators. This increased complexity comes from the unpredictable and intermittent nature of these new resources. Monte Carlo techniques are used to estimate the production costs of renewable energy sources and plug-in electric vehicles (PEVs) and analyze their viability. The uncertainty of the renewable sources and PEVs is modeled using Weibull, lognormal, and normal probability distribution functions (PDFs). The comprehensive OPF, incorporating renewable energy components and PEVs, is cast as a single objective problem encompassing various objectives, such as decreasing fuel costs, total emissions, voltage deviations, and real transmission losses. This research shares a common objective by introducing a novel hybrid metaheuristic optimization algorithm (MRGTO) to address the OPF challenge. Additionally, the study explores the impact of renewable energy resources and Vehicle-to-Grid (V2G) on the stochastic OPF problem. The MRGTO employs artificial gorilla troops optimizer (GTO) with manta ray foraging optimization (MRFO) algorithm to achieve the optimal results for the OPF problem with stochastic RES and V2G. The developed technique is expected to increase the solution accuracy through increasing the solution diversity through an optimization procedure. Initial assessments are executed on benchmark functions. After that, a combined model of wind and PV-integrated IEEE 30-bus system are executed by the proposed MRGTO algorithm and other well-known optimization algorithms. Additionally, the effectiveness of the proposed method is assessed using the IEEE 30-bus test system under different scenarios. The evaluations have shown the proposed MRGTO technique to be superior at attainment a best solution for the OPF problem considering stochastic wind and PV power and V2G. Moreover, the obtained solutions confirmed the MRGTO technique would be more effective in optimization with quicker convergence rate, and higher convergence precision. After testing, the effectiveness of the MRGTO algorithm has been found to be much robust than the conventional artificial gorilla troops optimizer, manta ray foraging optimization, and other well-known published heuristics, metaheuristics, and hybrid optimization techniques.INDEX TERMS Optimal power flow, plug-in electric vehicle, renewable energy sources, V2G, artificial gorilla troops optimizer, manta ray foraging optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Sid Ahmed El Mehdi Ardjoun; Mouloud Denai; Mohamed Abid;doi: 10.1002/we.2325
AbstractThis paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.
Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Sid Ahmed El Mehdi Ardjoun; Mouloud Denai; Mohamed Abid;doi: 10.1002/we.2325
AbstractThis paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.
Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Mohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; +5 AuthorsMohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; Noha Anwer; Ahmed I. Omar; Faisal Alsaif; Sager Alsulamy; Shazly A. Mohamed;In recent modern power systems, the number of renewable energy systems (RESs) and nonlinear loads have become more prevalent. When these systems are connected to the electricity grid, they may face new difficulties and issues such as harmonics and non-standard voltage. The proposed study suggests the application of a whale optimization algorithm (WOA) based on a fractional-order proportional-integral controller (FOPIC) for unified power quality conditioner (UPQC) and STATCOM tools. These operate best with the help of their improved control system, to increase the system’s reliability and fast dynamic response, and to decrease the total harmonic distortion (THD) for enhancing the power quality (PQ). In this article, three different configurations are studied and assessed, namely: (C1) WOA-based FOPIC for UPQC, (C2) WOA-based FOPIC for STATCOM, and (C3) system without FACTS, i.e., base case, to mitigate the mentioned drawbacks. C3 is also considered as a base case to highlight the main benefits of C1 and C2 in improving the PQ by reducing the %THD of the voltage and current system and improving the systems’ voltage waveforms. With C2, voltage fluctuation is decreased by 98%, but it nearly disappears in C1 during normal conditions. Additionally, during the fault period, voltage distortion is reduced by 95% and 100% with C2 and C1, respectively. Furthermore, when comparing C1 to C2 and C3 under regular conditions, the percentage reduction in THD is remarkable. In addition, C1 eliminates the need for voltage sag, and harmonic and current harmonic detectors, and it helps to streamline the control approach and boost control precision. The modeling and simulation of the prepared system are performed by MATLAB/Simulink. Finally, it can be concluded that the acquired results are very interesting and helpful in the recovery to the steady state of wind systems and nonlinear loads, thereby increasing their grid connection capabilities.
Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Mohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; +5 AuthorsMohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; Noha Anwer; Ahmed I. Omar; Faisal Alsaif; Sager Alsulamy; Shazly A. Mohamed;In recent modern power systems, the number of renewable energy systems (RESs) and nonlinear loads have become more prevalent. When these systems are connected to the electricity grid, they may face new difficulties and issues such as harmonics and non-standard voltage. The proposed study suggests the application of a whale optimization algorithm (WOA) based on a fractional-order proportional-integral controller (FOPIC) for unified power quality conditioner (UPQC) and STATCOM tools. These operate best with the help of their improved control system, to increase the system’s reliability and fast dynamic response, and to decrease the total harmonic distortion (THD) for enhancing the power quality (PQ). In this article, three different configurations are studied and assessed, namely: (C1) WOA-based FOPIC for UPQC, (C2) WOA-based FOPIC for STATCOM, and (C3) system without FACTS, i.e., base case, to mitigate the mentioned drawbacks. C3 is also considered as a base case to highlight the main benefits of C1 and C2 in improving the PQ by reducing the %THD of the voltage and current system and improving the systems’ voltage waveforms. With C2, voltage fluctuation is decreased by 98%, but it nearly disappears in C1 during normal conditions. Additionally, during the fault period, voltage distortion is reduced by 95% and 100% with C2 and C1, respectively. Furthermore, when comparing C1 to C2 and C3 under regular conditions, the percentage reduction in THD is remarkable. In addition, C1 eliminates the need for voltage sag, and harmonic and current harmonic detectors, and it helps to streamline the control approach and boost control precision. The modeling and simulation of the prepared system are performed by MATLAB/Simulink. Finally, it can be concluded that the acquired results are very interesting and helpful in the recovery to the steady state of wind systems and nonlinear loads, thereby increasing their grid connection capabilities.
Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; +3 AuthorsNagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; Mohamed Abuagreb; Usama Khaled; Mohamed Metwally Mahmoud;doi: 10.3390/su151813716
The integration of clean energy sources (CESs) into modern power systems has been studied using various power converter topologies. The challenges of integrating various CESs are facilitated by the proper design of multi-port power converter (MPPC) architecture. In this study, a brand-new two-stage MPPC is suggested as a solution to the intermittent nature and slow response (SR) of CESs. The suggested system combines a DC\DC and a DC\AC converter and storage unit, and the suggested circuit additionally incorporates a number of CESs (PV\wind\fuel cell (FC)). This article discusses the power management and control technique for an integrated four-port MPPC that links three input ports (PV, wind, and FC), a bidirectional battery port, and an isolated output port. One of the recent optimization techniques (Harris Hawk’s algorithm) is applied to optimize the system’s controller gains. By intelligently combining CESs with complementary characteristics, the adverse effects of intermittency are significantly mitigated, leading to an overall enhancement in system resilience and efficiency. Furthermore, integrating CESs with storage units not only addresses SR challenges but also effectively combats intermittent energy supply. The proposed system exhibits improved dynamic capabilities, allowing it to efficiently distribute excess energy to the load or absorb surplus energy from external sources. This dual functionality not only optimizes system operation but also contributes to a reduction in system size and cost, concurrently enhancing reliability. A comprehensive investigation into operational principles and meticulous design considerations are provided, elucidating the intricate mechanics of the suggested MPPC system. Employing MATLAB/Simulink, the proposed architecture and its control mechanisms undergo rigorous evaluation, affirming the feasibility and efficacy of this innovative system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; +3 AuthorsNagwa F. Ibrahim; Sid Ahmed El Mehdi Ardjoun; Mohammed Alharbi; Abdulaziz Alkuhayli; Mohamed Abuagreb; Usama Khaled; Mohamed Metwally Mahmoud;doi: 10.3390/su151813716
The integration of clean energy sources (CESs) into modern power systems has been studied using various power converter topologies. The challenges of integrating various CESs are facilitated by the proper design of multi-port power converter (MPPC) architecture. In this study, a brand-new two-stage MPPC is suggested as a solution to the intermittent nature and slow response (SR) of CESs. The suggested system combines a DC\DC and a DC\AC converter and storage unit, and the suggested circuit additionally incorporates a number of CESs (PV\wind\fuel cell (FC)). This article discusses the power management and control technique for an integrated four-port MPPC that links three input ports (PV, wind, and FC), a bidirectional battery port, and an isolated output port. One of the recent optimization techniques (Harris Hawk’s algorithm) is applied to optimize the system’s controller gains. By intelligently combining CESs with complementary characteristics, the adverse effects of intermittency are significantly mitigated, leading to an overall enhancement in system resilience and efficiency. Furthermore, integrating CESs with storage units not only addresses SR challenges but also effectively combats intermittent energy supply. The proposed system exhibits improved dynamic capabilities, allowing it to efficiently distribute excess energy to the load or absorb surplus energy from external sources. This dual functionality not only optimizes system operation but also contributes to a reduction in system size and cost, concurrently enhancing reliability. A comprehensive investigation into operational principles and meticulous design considerations are provided, elucidating the intricate mechanics of the suggested MPPC system. Employing MATLAB/Simulink, the proposed architecture and its control mechanisms undergo rigorous evaluation, affirming the feasibility and efficacy of this innovative system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:MDPI AG Authors: Mohammed Abbas; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;Currently, in modern wind farms, the doubly fed induction generator (DFIG) is commonly adopted for its ability to operate at variable wind speeds. Generally, this type of wind turbine is controlled by using two converters, one on the rotor side (RSC) and the other one on the grid side (GSC). However, the control of these two converters depends mainly on current sensors measurements. Nevertheless, in the case of sensor failure, control stability may be compromised, leading to serious malfunctions in the wind turbine system. Therefore, in this article, we will present an innovative diagnostic approach to detect, locate, and isolate the single and/or multiple real-phase current sensors in both converters. The suggested approach uses an extended Kalman filter (EKF) bank structured according to a generalized observer scheme (GOS) and relies on a nonlinear model for the RSC and a linear model for the GSC. The EKF estimates the currents in the converters, which are then compared to sensor measurements to generate residuals. These residuals are then processed in the localization, isolation, and decision blocks to precisely identify faulty sensors. The obtained results confirm the effectiveness of this approach to identify faulty sensors in the abc phases. It also demonstrates its ability to overcome the nonlinearity induced by wind fluctuations, as well as resolves the coupling issue between currents in the fault period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:MDPI AG Authors: Mohammed Abbas; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;Currently, in modern wind farms, the doubly fed induction generator (DFIG) is commonly adopted for its ability to operate at variable wind speeds. Generally, this type of wind turbine is controlled by using two converters, one on the rotor side (RSC) and the other one on the grid side (GSC). However, the control of these two converters depends mainly on current sensors measurements. Nevertheless, in the case of sensor failure, control stability may be compromised, leading to serious malfunctions in the wind turbine system. Therefore, in this article, we will present an innovative diagnostic approach to detect, locate, and isolate the single and/or multiple real-phase current sensors in both converters. The suggested approach uses an extended Kalman filter (EKF) bank structured according to a generalized observer scheme (GOS) and relies on a nonlinear model for the RSC and a linear model for the GSC. The EKF estimates the currents in the converters, which are then compared to sensor measurements to generate residuals. These residuals are then processed in the localization, isolation, and decision blocks to precisely identify faulty sensors. The obtained results confirm the effectiveness of this approach to identify faulty sensors in the abc phases. It also demonstrates its ability to overcome the nonlinearity induced by wind fluctuations, as well as resolves the coupling issue between currents in the fault period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24030728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Authors: Abdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; +3 AuthorsAbdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; Mohamed Metwally Mahmoud; Sid Ahmed El Mehdi Ardjoun; Aml Abubakr Tantawy;In Egypt, the climate has a direct impact on the dried date fruit production. The traditional drying method or open sun drying (OSD) leads to pollution of the final product caused by sand-laden winds, rain, or animals and harmful insects, etc. This study is aimed at designing, implementing, and experimentally validating a solar dryer based on IoT technology and integrated with a PV system in Aswan, Egypt. The purpose of the dryer is to monitor and control the quality of the three most popular date fruit varieties and determine the most effective drying method, with an algorithm that operates the system automatically for optimal performance and high-quality products. The automatic solar dryer (ASD) significantly affects the final moisture content and color characteristics and reaches the equilibrium moisture content (EMC) at a faster rate for dried date samples compared to the OSD. The drying rate of ASD was 29.03% (Sakkoti), 31.04% (Malkabi), and 25.49% (Gondaila) higher than OSD. Also, the dried date fruit samples reached EMC on the ASD after 8 days for both Malkabi and Gondaila and 9 days for Sakkoti, while it took 14 to 15 days on OSD. The maximum open circuit voltage V oc , short circuit current I sc , and output power P output were 41.70 V, 8.84 A, and 365.09 W, respectively. All values of total color change ( Δ E ∗ ) after open-air drying of dry date varieties were higher than solar drying for both drying systems. This study can be then more helpful for producers of dried foods.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Authors: Abdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; +3 AuthorsAbdallah E. Elwakeel; Daniel Eutyche Mbadjoun Wapet; Wael El Magd; S. E. Abdallah; Mohamed Metwally Mahmoud; Sid Ahmed El Mehdi Ardjoun; Aml Abubakr Tantawy;In Egypt, the climate has a direct impact on the dried date fruit production. The traditional drying method or open sun drying (OSD) leads to pollution of the final product caused by sand-laden winds, rain, or animals and harmful insects, etc. This study is aimed at designing, implementing, and experimentally validating a solar dryer based on IoT technology and integrated with a PV system in Aswan, Egypt. The purpose of the dryer is to monitor and control the quality of the three most popular date fruit varieties and determine the most effective drying method, with an algorithm that operates the system automatically for optimal performance and high-quality products. The automatic solar dryer (ASD) significantly affects the final moisture content and color characteristics and reaches the equilibrium moisture content (EMC) at a faster rate for dried date samples compared to the OSD. The drying rate of ASD was 29.03% (Sakkoti), 31.04% (Malkabi), and 25.49% (Gondaila) higher than OSD. Also, the dried date fruit samples reached EMC on the ASD after 8 days for both Malkabi and Gondaila and 9 days for Sakkoti, while it took 14 to 15 days on OSD. The maximum open circuit voltage V oc , short circuit current I sc , and output power P output were 41.70 V, 8.84 A, and 365.09 W, respectively. All values of total color change ( Δ E ∗ ) after open-air drying of dry date varieties were higher than solar drying for both drying systems. This study can be then more helpful for producers of dried foods.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2023/7425045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Authors: Nagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; +4 AuthorsNagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; Sid Ahmed El Mehdi Ardjoun; Mohamed I. Mosaad; Ammar M. Hassan; H. Abdelfattah;pmid: 37922271
pmc: PMC10624298
Solar energy, a prominent renewable resource, relies on photovoltaic systems (PVS) to capture energy efficiently. The challenge lies in maximizing power generation, which fluctuates due to changing environmental conditions like irradiance and temperature. Maximum Power Point Tracking (MPPT) techniques have been developed to optimize PVS output. Among these, the incremental conductance (INC) method is widely recognized. However, adapting INC to varying environmental conditions remains a challenge. This study introduces an innovative approach to adaptive MPPT for grid-connected PVS, enhancing classical INC by integrating a PID controller updated through a fuzzy self-tuning controller (INC-FST). INC-FST dynamically regulates the boost converter signal, connecting the PVS’s DC output to the grid-connected inverter. A comprehensive evaluation, comparing the proposed adaptive MPPT technique (INC-FST) with conventional MPPT methods such as INC, Perturb & Observe (P&O), and INC Fuzzy Logic (INC-FL), was conducted. Metrics assessed include current, voltage, efficiency, power, and DC bus voltage under different climate scenarios. The proposed MPPT-INC-FST algorithm demonstrated superior efficiency, achieving 99.80%, 99.76%, and 99.73% for three distinct climate scenarios. Furthermore, the comparative analysis highlighted its precision in terms of control indices, minimizing overshoot, reducing rise time, and maximizing PVS power output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Authors: Nagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; +4 AuthorsNagwa F. Ibrahim; Mohamed Metwally Mahmoud; Hashim Alnami; Daniel Eutyche Mbadjoun Wapet; Sid Ahmed El Mehdi Ardjoun; Mohamed I. Mosaad; Ammar M. Hassan; H. Abdelfattah;pmid: 37922271
pmc: PMC10624298
Solar energy, a prominent renewable resource, relies on photovoltaic systems (PVS) to capture energy efficiently. The challenge lies in maximizing power generation, which fluctuates due to changing environmental conditions like irradiance and temperature. Maximum Power Point Tracking (MPPT) techniques have been developed to optimize PVS output. Among these, the incremental conductance (INC) method is widely recognized. However, adapting INC to varying environmental conditions remains a challenge. This study introduces an innovative approach to adaptive MPPT for grid-connected PVS, enhancing classical INC by integrating a PID controller updated through a fuzzy self-tuning controller (INC-FST). INC-FST dynamically regulates the boost converter signal, connecting the PVS’s DC output to the grid-connected inverter. A comprehensive evaluation, comparing the proposed adaptive MPPT technique (INC-FST) with conventional MPPT methods such as INC, Perturb & Observe (P&O), and INC Fuzzy Logic (INC-FL), was conducted. Metrics assessed include current, voltage, efficiency, power, and DC bus voltage under different climate scenarios. The proposed MPPT-INC-FST algorithm demonstrated superior efficiency, achieving 99.80%, 99.76%, and 99.73% for three distinct climate scenarios. Furthermore, the comparative analysis highlighted its precision in terms of control indices, minimizing overshoot, reducing rise time, and maximizing PVS power output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0293613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:MDPI AG Authors: Mohammed Zerdani; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;doi: 10.3390/sym16040395
Currently, power trains based on an Open-End Winding Induction Machine fed by a Dual Inverter (DI-OEWIM) are attracting a great deal of interest in various modern industrial applications. However, applying symmetrical control to this system (DI-OEWIM), which is symmetrical in nature, will lead to malfunction. Therefore, the objective of this paper is to explore the influence of asymmetric control on the performance of this system. The principle of this study is to create an asymmetrical control by integrating a phase-shift angle in the Space Vector Pulse Width Modulation (SVPWM) strategy. We then evaluate the impact of these angles on various performances, such as the Total Harmonic Distortion (THD), power losses, Common Mode Voltage (CMV), Zero-Sequence Voltage (ZSV), rotation speed and torque ripple of this system. This study was carried out in the Matlab/Simulink environment and was validated experimentally using the dSPACE 1104 board. The results show that the different angles have significant effects on the overall performance of this system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:MDPI AG Authors: Mohammed Zerdani; Houcine Chafouk; Sid Ahmed El Mehdi Ardjoun;doi: 10.3390/sym16040395
Currently, power trains based on an Open-End Winding Induction Machine fed by a Dual Inverter (DI-OEWIM) are attracting a great deal of interest in various modern industrial applications. However, applying symmetrical control to this system (DI-OEWIM), which is symmetrical in nature, will lead to malfunction. Therefore, the objective of this paper is to explore the influence of asymmetric control on the performance of this system. The principle of this study is to create an asymmetrical control by integrating a phase-shift angle in the Space Vector Pulse Width Modulation (SVPWM) strategy. We then evaluate the impact of these angles on various performances, such as the Total Harmonic Distortion (THD), power losses, Common Mode Voltage (CMV), Zero-Sequence Voltage (ZSV), rotation speed and torque ripple of this system. This study was carried out in the Matlab/Simulink environment and was validated experimentally using the dSPACE 1104 board. The results show that the different angles have significant effects on the overall performance of this system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym16040395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:ASME International Authors: Ardjoun, Sid Ahmed El Mehdi; Denaï, Mouloud; Chafouk, Houcine;doi: 10.1115/1.4055099
Abstract Distributed solar photovoltaic (PV) generation is growing rapidly around the world. However, unlike conventional synchronous generators, PV systems do not have any rotating masses to deliver inertia to support the grid frequency. The paper presents a detailed modeling of a new converter configuration and control scheme to enable PV systems to adjust the real power output and contribute to the grid frequency regulation. The proposed topology consists of a two-stage converter without an energy storage system. A DC–DC buck converter is used instead of a DC–DC boost converter, and this simplifies the control scheme which aims to keep the PV generator power in the right side of the P–V characteristic and can be varied in the range from near-zero to the maximum power. The proposed control scheme combines robust and nonlinear sliding mode theory with fuzzy logic. The PV system is connected to a low inertia microgrid and its ability to contribute to frequency regulation is assessed for different controls. The proposed converter and its control are validated experimentally on a 3-kW PV system using OPAL-RT real-time simulator and tested under varying temperature, solar irradiance, and partial shading conditions. The results show that with the proposed circuit, the operating point is always on the right side of the P–V characteristic irrespective of the operating mode. Furthermore, the proposed control scheme provides PV generators with a fast and effective inertial response to support the grid and enhance its stability during contingencies.
Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:ASME International Authors: Ardjoun, Sid Ahmed El Mehdi; Denaï, Mouloud; Chafouk, Houcine;doi: 10.1115/1.4055099
Abstract Distributed solar photovoltaic (PV) generation is growing rapidly around the world. However, unlike conventional synchronous generators, PV systems do not have any rotating masses to deliver inertia to support the grid frequency. The paper presents a detailed modeling of a new converter configuration and control scheme to enable PV systems to adjust the real power output and contribute to the grid frequency regulation. The proposed topology consists of a two-stage converter without an energy storage system. A DC–DC buck converter is used instead of a DC–DC boost converter, and this simplifies the control scheme which aims to keep the PV generator power in the right side of the P–V characteristic and can be varied in the range from near-zero to the maximum power. The proposed control scheme combines robust and nonlinear sliding mode theory with fuzzy logic. The PV system is connected to a low inertia microgrid and its ability to contribute to frequency regulation is assessed for different controls. The proposed converter and its control are validated experimentally on a 3-kW PV system using OPAL-RT real-time simulator and tested under varying temperature, solar irradiance, and partial shading conditions. The results show that with the proposed circuit, the operating point is always on the right side of the P–V characteristic irrespective of the operating mode. Furthermore, the proposed control scheme provides PV generators with a fast and effective inertial response to support the grid and enhance its stability during contingencies.
Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mohamed H. Hassan; Ehab Mahmoud Mohamed; Salah Kamel; Sid Ahmed El Mehdi Ardjoun;Over the past ten years, global electricity networks have undergone rapid advancements, primarily driven by the widespread adoption of renewable energy resources (RES). While these sources have accompanied in a gathering of advantages, such as cost-effective operation of wind and solar photovoltaic (PV) installations and the mitigation of environmental hazards linked with traditional power sources, they have also introduced a host of challenges to planning and operation of power systems. Also, Plug-in electric vehicles (PEVs) stand out as a highly promising technology for reducing carbon emissions in the transportation sector, aligning with the global Net-zero target. The standard optimal power flow (OPF) problem, which is naturally nonlinear, has become even more complex with the addition of renewable energy sources and plug-in electric vehicles along with traditional thermal power generators. This increased complexity comes from the unpredictable and intermittent nature of these new resources. Monte Carlo techniques are used to estimate the production costs of renewable energy sources and plug-in electric vehicles (PEVs) and analyze their viability. The uncertainty of the renewable sources and PEVs is modeled using Weibull, lognormal, and normal probability distribution functions (PDFs). The comprehensive OPF, incorporating renewable energy components and PEVs, is cast as a single objective problem encompassing various objectives, such as decreasing fuel costs, total emissions, voltage deviations, and real transmission losses. This research shares a common objective by introducing a novel hybrid metaheuristic optimization algorithm (MRGTO) to address the OPF challenge. Additionally, the study explores the impact of renewable energy resources and Vehicle-to-Grid (V2G) on the stochastic OPF problem. The MRGTO employs artificial gorilla troops optimizer (GTO) with manta ray foraging optimization (MRFO) algorithm to achieve the optimal results for the OPF problem with stochastic RES and V2G. The developed technique is expected to increase the solution accuracy through increasing the solution diversity through an optimization procedure. Initial assessments are executed on benchmark functions. After that, a combined model of wind and PV-integrated IEEE 30-bus system are executed by the proposed MRGTO algorithm and other well-known optimization algorithms. Additionally, the effectiveness of the proposed method is assessed using the IEEE 30-bus test system under different scenarios. The evaluations have shown the proposed MRGTO technique to be superior at attainment a best solution for the OPF problem considering stochastic wind and PV power and V2G. Moreover, the obtained solutions confirmed the MRGTO technique would be more effective in optimization with quicker convergence rate, and higher convergence precision. After testing, the effectiveness of the MRGTO algorithm has been found to be much robust than the conventional artificial gorilla troops optimizer, manta ray foraging optimization, and other well-known published heuristics, metaheuristics, and hybrid optimization techniques.INDEX TERMS Optimal power flow, plug-in electric vehicle, renewable energy sources, V2G, artificial gorilla troops optimizer, manta ray foraging optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mohamed H. Hassan; Ehab Mahmoud Mohamed; Salah Kamel; Sid Ahmed El Mehdi Ardjoun;Over the past ten years, global electricity networks have undergone rapid advancements, primarily driven by the widespread adoption of renewable energy resources (RES). While these sources have accompanied in a gathering of advantages, such as cost-effective operation of wind and solar photovoltaic (PV) installations and the mitigation of environmental hazards linked with traditional power sources, they have also introduced a host of challenges to planning and operation of power systems. Also, Plug-in electric vehicles (PEVs) stand out as a highly promising technology for reducing carbon emissions in the transportation sector, aligning with the global Net-zero target. The standard optimal power flow (OPF) problem, which is naturally nonlinear, has become even more complex with the addition of renewable energy sources and plug-in electric vehicles along with traditional thermal power generators. This increased complexity comes from the unpredictable and intermittent nature of these new resources. Monte Carlo techniques are used to estimate the production costs of renewable energy sources and plug-in electric vehicles (PEVs) and analyze their viability. The uncertainty of the renewable sources and PEVs is modeled using Weibull, lognormal, and normal probability distribution functions (PDFs). The comprehensive OPF, incorporating renewable energy components and PEVs, is cast as a single objective problem encompassing various objectives, such as decreasing fuel costs, total emissions, voltage deviations, and real transmission losses. This research shares a common objective by introducing a novel hybrid metaheuristic optimization algorithm (MRGTO) to address the OPF challenge. Additionally, the study explores the impact of renewable energy resources and Vehicle-to-Grid (V2G) on the stochastic OPF problem. The MRGTO employs artificial gorilla troops optimizer (GTO) with manta ray foraging optimization (MRFO) algorithm to achieve the optimal results for the OPF problem with stochastic RES and V2G. The developed technique is expected to increase the solution accuracy through increasing the solution diversity through an optimization procedure. Initial assessments are executed on benchmark functions. After that, a combined model of wind and PV-integrated IEEE 30-bus system are executed by the proposed MRGTO algorithm and other well-known optimization algorithms. Additionally, the effectiveness of the proposed method is assessed using the IEEE 30-bus test system under different scenarios. The evaluations have shown the proposed MRGTO technique to be superior at attainment a best solution for the OPF problem considering stochastic wind and PV power and V2G. Moreover, the obtained solutions confirmed the MRGTO technique would be more effective in optimization with quicker convergence rate, and higher convergence precision. After testing, the effectiveness of the MRGTO algorithm has been found to be much robust than the conventional artificial gorilla troops optimizer, manta ray foraging optimization, and other well-known published heuristics, metaheuristics, and hybrid optimization techniques.INDEX TERMS Optimal power flow, plug-in electric vehicle, renewable energy sources, V2G, artificial gorilla troops optimizer, manta ray foraging optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3425754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Sid Ahmed El Mehdi Ardjoun; Mouloud Denai; Mohamed Abid;doi: 10.1002/we.2325
AbstractThis paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.
Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Sid Ahmed El Mehdi Ardjoun; Mouloud Denai; Mohamed Abid;doi: 10.1002/we.2325
AbstractThis paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.
Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Mohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; +5 AuthorsMohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; Noha Anwer; Ahmed I. Omar; Faisal Alsaif; Sager Alsulamy; Shazly A. Mohamed;In recent modern power systems, the number of renewable energy systems (RESs) and nonlinear loads have become more prevalent. When these systems are connected to the electricity grid, they may face new difficulties and issues such as harmonics and non-standard voltage. The proposed study suggests the application of a whale optimization algorithm (WOA) based on a fractional-order proportional-integral controller (FOPIC) for unified power quality conditioner (UPQC) and STATCOM tools. These operate best with the help of their improved control system, to increase the system’s reliability and fast dynamic response, and to decrease the total harmonic distortion (THD) for enhancing the power quality (PQ). In this article, three different configurations are studied and assessed, namely: (C1) WOA-based FOPIC for UPQC, (C2) WOA-based FOPIC for STATCOM, and (C3) system without FACTS, i.e., base case, to mitigate the mentioned drawbacks. C3 is also considered as a base case to highlight the main benefits of C1 and C2 in improving the PQ by reducing the %THD of the voltage and current system and improving the systems’ voltage waveforms. With C2, voltage fluctuation is decreased by 98%, but it nearly disappears in C1 during normal conditions. Additionally, during the fault period, voltage distortion is reduced by 95% and 100% with C2 and C1, respectively. Furthermore, when comparing C1 to C2 and C3 under regular conditions, the percentage reduction in THD is remarkable. In addition, C1 eliminates the need for voltage sag, and harmonic and current harmonic detectors, and it helps to streamline the control approach and boost control precision. The modeling and simulation of the prepared system are performed by MATLAB/Simulink. Finally, it can be concluded that the acquired results are very interesting and helpful in the recovery to the steady state of wind systems and nonlinear loads, thereby increasing their grid connection capabilities.
Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Mohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; +5 AuthorsMohamed Metwally Mahmoud; Basiony Shehata Atia; Yahia M. Esmail; Sid Ahmed El Mehdi Ardjoun; Noha Anwer; Ahmed I. Omar; Faisal Alsaif; Sager Alsulamy; Shazly A. Mohamed;In recent modern power systems, the number of renewable energy systems (RESs) and nonlinear loads have become more prevalent. When these systems are connected to the electricity grid, they may face new difficulties and issues such as harmonics and non-standard voltage. The proposed study suggests the application of a whale optimization algorithm (WOA) based on a fractional-order proportional-integral controller (FOPIC) for unified power quality conditioner (UPQC) and STATCOM tools. These operate best with the help of their improved control system, to increase the system’s reliability and fast dynamic response, and to decrease the total harmonic distortion (THD) for enhancing the power quality (PQ). In this article, three different configurations are studied and assessed, namely: (C1) WOA-based FOPIC for UPQC, (C2) WOA-based FOPIC for STATCOM, and (C3) system without FACTS, i.e., base case, to mitigate the mentioned drawbacks. C3 is also considered as a base case to highlight the main benefits of C1 and C2 in improving the PQ by reducing the %THD of the voltage and current system and improving the systems’ voltage waveforms. With C2, voltage fluctuation is decreased by 98%, but it nearly disappears in C1 during normal conditions. Additionally, during the fault period, voltage distortion is reduced by 95% and 100% with C2 and C1, respectively. Furthermore, when comparing C1 to C2 and C3 under regular conditions, the percentage reduction in THD is remarkable. In addition, C1 eliminates the need for voltage sag, and harmonic and current harmonic detectors, and it helps to streamline the control approach and boost control precision. The modeling and simulation of the prepared system are performed by MATLAB/Simulink. Finally, it can be concluded that the acquired results are very interesting and helpful in the recovery to the steady state of wind systems and nonlinear loads, thereby increasing their grid connection capabilities.
Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Axioms arrow_drop_down AxiomsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-1680/12/5/420/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/axioms12050420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu