- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Publisher:Elsevier BV Aisha Al-Rumaihi; Prakash Parthasarathy; Anabel Fernandez; Tareq Al‐Ansari; Hamish R. Mackey; Rosa Rodríguez; Germán Mazza; Gordon McKay;Une utilisation alternative et durable des déchets de fumier de chameau a été étudiée dans cette étude. Les caractéristiques de dégradation par pyrolyse de la bouse de chameau ont été étudiées à l'aide d'un analyseur thermogravimétrique et comparées au comportement de décomposition par gazéification de la bouse. Les analyses de pyrolyse ont été effectuées à des vitesses de chauffage de 10, 20 et 50 K/min de la température ambiante à 1173 K sous une atmosphère inerte de N2. La cinétique pyrolytique a été estimée à l'aide de différents modèles tels que Coats-Redfern, Friedman, Distributed activation energy, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa et Starink. Les valeurs moyennes de l'énergie d'activation étaient cohérentes (162–172 kJ/mol) pour tous les modèles. La comparaison de la cinétique de pyrolyse avec la cinétique de gazéification a indiqué que la bouse de chameau nécessite plus d'énergie d'activation pour la décomposition de la pyrolyse. Les valeurs estimées de l'énergie d'activation et l'équation de Kissinger ont été utilisées pour déterminer les propriétés thermodynamiques telles que l'énergie libre de Gibbs, l'enthalpie et l'entropie. L'énergie libre de Gibbs et les valeurs d'enthalpie de la dégradation par pyrolyse étaient plus faibles que dans le cas de la décomposition par gazéification. Les détails de ces paramètres cinétiques et propriétés thermodynamiques sont vitaux pour la conception et la fabrication des réacteurs de pyrolyse. En este estudio se ha investigado una utilización alternativa y sostenible de los desechos de estiércol de camello. Las características de degradación por pirólisis del estiércol de camello se han investigado utilizando un analizador termogravimétrico y se han comparado con el comportamiento de descomposición por gasificación del estiércol. Los análisis de pirólisis se realizaron a velocidades de calentamiento de 10, 20 y 50 K/min desde temperatura ambiente hasta 1173 K en una atmósfera inerte de N2. La cinética pirolítica se estimó utilizando diferentes modelos como Coats-Redfern, Friedman, energía de activación distribuida, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa y Starink. Los valores medios de energía de activación fueron consistentes (162–172 kJ/mol) para todos los modelos. La comparación de la cinética de la pirólisis con la cinética de la gasificación indicó que el estiércol de camello requiere más energía de activación para la descomposición de la pirólisis. Los valores estimados de energía de activación y la ecuación de Kissinger se utilizaron para determinar las propiedades termodinámicas como la energía libre de Gibbs, la entalpía y la entropía. Los valores de energía libre de Gibbs y entalpía de la degradación por pirólisis fueron menores que en el caso de la descomposición por gasificación. Los detalles de estos parámetros cinéticos y propiedades termodinámicas son vitales para el diseño y la fabricación de reactores de pirólisis. An alternate and sustainable utilisation of camel dung waste has been investigated in this study. The pyrolysis degradation characteristics of camel dung have been investigated using a thermogravimetric analyser and the same has been compared with the gasification decomposition behaviour of the dung. The pyrolysis analyses were performed at heating rates of 10, 20, and 50 K/min from room temperature to 1173 K under an inert N2 atmosphere. The pyrolytic kinetics were estimated using different models such as Coats-Redfern, Friedman, Distributed activation energy, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink. The average activation energy values were consistent (162–172 kJ/mol) for all the models. Comparison of pyrolysis kinetics with gasification kinetics indicated that the camel dung requires more activation energy for the pyrolysis decomposition. The estimated activation energy values and the Kissinger equation were used to determine the thermodynamic properties such as Gibbs free energy, enthalpy, and entropy. The Gibbs free energy and enthalpy values of the pyrolysis degradation were lower than in the case of the gasification decomposition. The details of these kinetic parameters and thermodynamic properties are vital for the design and fabrication of pyrolysis reactors. تم التحقيق في استخدام بديل ومستدام لنفايات روث الإبل في هذه الدراسة. تم التحقيق في خصائص تحلل الانحلال الحراري لروث الإبل باستخدام محلل قياس الجاذبية الحرارية وتمت مقارنة ذلك مع سلوك تحلل التغويز للروث. تم إجراء تحليلات الانحلال الحراري بمعدلات تسخين 10 و 20 و 50 كلفن/دقيقة من درجة حرارة الغرفة إلى 1173 كلفن تحت جو N2 خامل. تم تقدير حركية الانحلال الحراري باستخدام نماذج مختلفة مثل Coats - Redfern و Friedman و Distributed activation energy و Kissinger - Akahira - Sunose و Flynn - Wall - Ozawa و Starink. كان متوسط قيم طاقة التنشيط ثابتًا (162–172 كيلو جول/مول) لجميع النماذج. تشير مقارنة حركية الانحلال الحراري مع حركية التغويز إلى أن روث الجمل يتطلب المزيد من طاقة التنشيط لتحلل الانحلال الحراري. تم استخدام قيم طاقة التنشيط المقدرة ومعادلة كيسنجر لتحديد الخصائص الديناميكية الحرارية مثل طاقة جيبس الحرة، والمحتوى الحراري، والإنتروبيا. كانت قيم طاقة جيبس الحرة والمحتوى الحراري لتحلل الانحلال الحراري أقل مما كانت عليه في حالة تحلل التغويز. تعد تفاصيل هذه المعلمات الحركية والخصائص الديناميكية الحرارية حيوية لتصميم وتصنيع مفاعلات الانحلال الحراري.
Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Environmental Chemical EngineeringConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Environmental Chemical EngineeringConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ArgentinaPublisher:Elsevier BV Authors: Fernandez Brizuela, Anabel Alejandra; Saffe Pinto, María Alejandra; Pereyra, Regina; Mazza, German Delfor; +1 AuthorsFernandez Brizuela, Anabel Alejandra; Saffe Pinto, María Alejandra; Pereyra, Regina; Mazza, German Delfor; Rodríguez, Rosa;handle: 11336/47001
Fil: Fernandez Brizuela, Anabel Alejandra. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina
CONICET Digital arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.06.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.06.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Elsevier BV Authors: Baldán, Yanina Lorena; Fernandez, Anabe; Reyes Urrutia, Ramón Andrés; Fabani, Maria Paula; +2 AuthorsBaldán, Yanina Lorena; Fernandez, Anabe; Reyes Urrutia, Ramón Andrés; Fabani, Maria Paula; Rodriguez, Rosa Ana; Mazza, German Delfor;A macro-thermogravimetric analysis (macro-TGA) was applied to analyse the non-isothermal drying of different bio-wastes (quince solid waste, grape marc and pumpkin shell from different enterprises located in San Juan Province, Argentina). The experimental data were obtained at three heating rates (5, 10 and 15 K/min) and two different initial moisture contents (30 and 50% w/w). These data were fitted using the Coats-Redfern and Sharp methods. The D2 model showed the best fitting for all experiments when using the Coats-Redfern method. It is assumed that drying occurs on the solid boundary. The predicted Ea values ranged from 43.60 to 64.50 kJ/mol for the three bio-wastes under the different experimental conditions. The Ea value slightly increases with the increase in heating rate because the wastes require more energy to undergo drying. Deff increases moderately with temperature at the beginning of the dehydration process; then, this increasing behaviour is significant due to the loss of continuous moisture channels. Otherwise, Deff increases with the initial moisture content, showing that the humidity of the samples did not reach the saturation content.
CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1988Publisher:Elsevier BV Authors: John G. Yates; Guillermo Fernando Barreto; Germán Mazza;Abstract Bed collapse experiments are interpreted by a three-phase model of a gas-fluidized bed. Application of the model leads to a relationship between bed voidage in the sedimentation zone of the collapse and the properties of the emulsion and bubble phases of the bed prior to the collapse. Experimental results show that for beds of small particles fluidized under pressure the flow of gas through the emulsion phase is higher than that expected on the basis of existing theories, but it is shown that average rise velocities of bubbles may be obtained from results of bed collapse measurements.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 1988 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(88)80057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 1988 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(88)80057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Argentina, FrancePublisher:Elsevier BV Reyes Urrutia, Andrés; Benoit, Hadrien; Zambon, Mariana; Gauthier, Daniel; Flamant, Gilles; Mazza, Germán;handle: 11336/61355
In the search for greater efficiency and storage capacity improvements in solar energy concentration plants, a new concept for fluid transfer was proposed. This concept consists of a dense suspension of SiC particles (dp = 6.4 × 10−5 m) that is air fluidized, which allows operation at higher temperatures than the fluids currently used, such as molten salts, water, oils and air. The suspension, as a fluid, also provides energy storage. The upward flow of the SiC–air suspension inside a steel tube is achieved using a circulating fluidized bed dense regime. Concentrated solar radiation impinges the walls of the tube, increasing the temperature of the granular material up to 200–250 °C. The system in this study is part of a prototype in the PROMES Laboratory in France. Maintaining low fluidization velocities guarantees high solid fractions throughout the tube (0.28–0.45). This study simulates heat transfer between the wall and the suspension using computational fluid dynamics (CFD) (ANSYS-Fluent 14.5) for different operating conditions. The Euler–Euler model is used as the multi-phase model. The average experimental temperature in the emulsion at the exit of the heat transfer zone compares well with the temperature obtained in the CFD simulation. The global heat transfer coefficients obtained in the simulation are in good agreement with those obtained experimentally for all operating conditions. These results show that the developed simulation approach is a good representation of the real process and provides relevant information related to the movement of particles in the tube and its relation to heat transfer in the prototype.
LAReferencia - Red F... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverChemical Engineering Research and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2015.12.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverChemical Engineering Research and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2015.12.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ArgentinaPublisher:Elsevier BV Gilles Flamant; Quentin Falcoz; Daniel J. Gauthier; Jose Miguel Soria; Jose Miguel Soria; Germán Mazza;The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.
LAReferencia - Red F... arrow_drop_down Journal of Hazardous MaterialsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Journal of Hazardous MaterialsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ArgentinaPublisher:MDPI AG Authors: Juan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; +4 AuthorsJuan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; Yimin Deng; Jan Baeyens; Rosa Rodriguez; Germán Mazza;doi: 10.3390/pr10020339
handle: 11336/216407
Spent grains from microbreweries are mostly formed by malting barley (or malt) and are suitable for a further valorization process. Transforming spent grains from waste to raw materials, for instance, in the production of nontraditional flour, requires a previous drying process. A natural convection solar dryer (NCSD) was evaluated as an alternative to a conventional electric convective dryer (CECD) for the dehydration process of local microbrewers’ spent grains. Two types of brewer’s spent grains (BSG; Golden ale and Red ale) were dried with both systems, and sustainability indices, specific energy consumption (eC), and CO2 emissions were calculated and used to assess the environmental advantages and disadvantages of the NCSD. Then, suitable models (empirical, neural networks, and computational fluid dynamics) were used to simulate both types of drying processes under different conditions. The drying times were 30–85 min (depending on the drying temperature, 363.15 K and 333.15 K) and 345–430 min (depending on the starting daytime hour at which the drying process began) for the CECD and the NCSD, respectively. However, eC and CO2 emissions for the CECD were 1.68–1.88 · 10−3 (kW h)/kg and 294.80–410.73 kg/(kW h) for the different drying temperatures. Using the NCSD, both indicators were null, considering this aspect as an environmental benefit.
Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ArgentinaPublisher:Elsevier BV Authors: J. Soria; R. Li; G. Flamant; G.D. Mazza;handle: 11336/127350
Abstract The growing interest in syngas production from biomass has extended research towards solar-driven pyrolysis taking place at high temperature and heating rate, due to its high efficiency and environmental advantages. The aim of this work is to experimentally study and compare the effect of pellet size (5, 10 and 15 mm height) on product yields (liquid, char and gas), gas composition (H2, CO, CO2, CH4) and tar secondary reactions during fast solar pyrolysis of sawdust pellets (800, 1200 and 1600 °C and heating rates of 10 and 50 °C/s). Additionally, the influence of pellet height on syngas quality is analyzed by parameters such as H2/CO, CH4/H2 ratios, mechanical gas efficiency and carbon conversion efficiency, focused on methanol production. An analysis based on characteristic times and dimensionless numbers is also performed to estimate the rate-controlling phenomena. Experimental results showed that, for temperatures below 1200 °C, there were no significant differences in the gas yield for the three pellet heights. However, the gas product distribution was influenced by the pellet size even at 800 °C. A further increase in temperature emphasized the influence of the pellet height on both gas yield and gas composition. Therefore, it can be argued that, in order to improve the gas yield and the quality of the syngas, the fast pyrogasification of large particles is advisable.
CONICET Digital arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2019.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2019.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ArgentinaPublisher:Elsevier BV Soria, Jose Miguel; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, German Delfor;Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Anabel Fernandez; Daniela Zalazar-García; Carla Lorenzo-Doncel; Diego Mauricio Yepes Maya; +3 AuthorsAnabel Fernandez; Daniela Zalazar-García; Carla Lorenzo-Doncel; Diego Mauricio Yepes Maya; Electo Eduardo Silva Lora; Rosa Rodriguez; Germán Mazza;doi: 10.3390/su16104056
This study addresses the co-pyrogasification of municipal solid waste (MSW) from the Environmental Technology Park, San Juan, Argentina. This process involves heating waste at high temperatures in a low-oxygen or oxygen-free atmosphere as a sustainable strategy for waste management and energy generation. The principal objective is to focus on understanding the MSW co-pyrogasification kinetics to enhance performance in reactor design. A representative sample of MSW collected over a month was analyzed, focusing on the variation in mass proportions of plastic, organic matter, and paper. The empirical methodology included the deconvolution of macro-TGA curves and deep learning algorithms to predict and validate macro-TG data during co-pyrogasification. The findings reveal that MSW is a solid matrix more easily treated on thermochemical platforms, with kinetic and thermodynamic parameters favoring its processing. This approach suggests that MSW co-pyrogasification may represent a feasible alternative for resource recovery and bioenergy production, supporting the policies for the transition to a cleaner future and a circular economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Publisher:Elsevier BV Aisha Al-Rumaihi; Prakash Parthasarathy; Anabel Fernandez; Tareq Al‐Ansari; Hamish R. Mackey; Rosa Rodríguez; Germán Mazza; Gordon McKay;Une utilisation alternative et durable des déchets de fumier de chameau a été étudiée dans cette étude. Les caractéristiques de dégradation par pyrolyse de la bouse de chameau ont été étudiées à l'aide d'un analyseur thermogravimétrique et comparées au comportement de décomposition par gazéification de la bouse. Les analyses de pyrolyse ont été effectuées à des vitesses de chauffage de 10, 20 et 50 K/min de la température ambiante à 1173 K sous une atmosphère inerte de N2. La cinétique pyrolytique a été estimée à l'aide de différents modèles tels que Coats-Redfern, Friedman, Distributed activation energy, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa et Starink. Les valeurs moyennes de l'énergie d'activation étaient cohérentes (162–172 kJ/mol) pour tous les modèles. La comparaison de la cinétique de pyrolyse avec la cinétique de gazéification a indiqué que la bouse de chameau nécessite plus d'énergie d'activation pour la décomposition de la pyrolyse. Les valeurs estimées de l'énergie d'activation et l'équation de Kissinger ont été utilisées pour déterminer les propriétés thermodynamiques telles que l'énergie libre de Gibbs, l'enthalpie et l'entropie. L'énergie libre de Gibbs et les valeurs d'enthalpie de la dégradation par pyrolyse étaient plus faibles que dans le cas de la décomposition par gazéification. Les détails de ces paramètres cinétiques et propriétés thermodynamiques sont vitaux pour la conception et la fabrication des réacteurs de pyrolyse. En este estudio se ha investigado una utilización alternativa y sostenible de los desechos de estiércol de camello. Las características de degradación por pirólisis del estiércol de camello se han investigado utilizando un analizador termogravimétrico y se han comparado con el comportamiento de descomposición por gasificación del estiércol. Los análisis de pirólisis se realizaron a velocidades de calentamiento de 10, 20 y 50 K/min desde temperatura ambiente hasta 1173 K en una atmósfera inerte de N2. La cinética pirolítica se estimó utilizando diferentes modelos como Coats-Redfern, Friedman, energía de activación distribuida, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa y Starink. Los valores medios de energía de activación fueron consistentes (162–172 kJ/mol) para todos los modelos. La comparación de la cinética de la pirólisis con la cinética de la gasificación indicó que el estiércol de camello requiere más energía de activación para la descomposición de la pirólisis. Los valores estimados de energía de activación y la ecuación de Kissinger se utilizaron para determinar las propiedades termodinámicas como la energía libre de Gibbs, la entalpía y la entropía. Los valores de energía libre de Gibbs y entalpía de la degradación por pirólisis fueron menores que en el caso de la descomposición por gasificación. Los detalles de estos parámetros cinéticos y propiedades termodinámicas son vitales para el diseño y la fabricación de reactores de pirólisis. An alternate and sustainable utilisation of camel dung waste has been investigated in this study. The pyrolysis degradation characteristics of camel dung have been investigated using a thermogravimetric analyser and the same has been compared with the gasification decomposition behaviour of the dung. The pyrolysis analyses were performed at heating rates of 10, 20, and 50 K/min from room temperature to 1173 K under an inert N2 atmosphere. The pyrolytic kinetics were estimated using different models such as Coats-Redfern, Friedman, Distributed activation energy, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink. The average activation energy values were consistent (162–172 kJ/mol) for all the models. Comparison of pyrolysis kinetics with gasification kinetics indicated that the camel dung requires more activation energy for the pyrolysis decomposition. The estimated activation energy values and the Kissinger equation were used to determine the thermodynamic properties such as Gibbs free energy, enthalpy, and entropy. The Gibbs free energy and enthalpy values of the pyrolysis degradation were lower than in the case of the gasification decomposition. The details of these kinetic parameters and thermodynamic properties are vital for the design and fabrication of pyrolysis reactors. تم التحقيق في استخدام بديل ومستدام لنفايات روث الإبل في هذه الدراسة. تم التحقيق في خصائص تحلل الانحلال الحراري لروث الإبل باستخدام محلل قياس الجاذبية الحرارية وتمت مقارنة ذلك مع سلوك تحلل التغويز للروث. تم إجراء تحليلات الانحلال الحراري بمعدلات تسخين 10 و 20 و 50 كلفن/دقيقة من درجة حرارة الغرفة إلى 1173 كلفن تحت جو N2 خامل. تم تقدير حركية الانحلال الحراري باستخدام نماذج مختلفة مثل Coats - Redfern و Friedman و Distributed activation energy و Kissinger - Akahira - Sunose و Flynn - Wall - Ozawa و Starink. كان متوسط قيم طاقة التنشيط ثابتًا (162–172 كيلو جول/مول) لجميع النماذج. تشير مقارنة حركية الانحلال الحراري مع حركية التغويز إلى أن روث الجمل يتطلب المزيد من طاقة التنشيط لتحلل الانحلال الحراري. تم استخدام قيم طاقة التنشيط المقدرة ومعادلة كيسنجر لتحديد الخصائص الديناميكية الحرارية مثل طاقة جيبس الحرة، والمحتوى الحراري، والإنتروبيا. كانت قيم طاقة جيبس الحرة والمحتوى الحراري لتحلل الانحلال الحراري أقل مما كانت عليه في حالة تحلل التغويز. تعد تفاصيل هذه المعلمات الحركية والخصائص الديناميكية الحرارية حيوية لتصميم وتصنيع مفاعلات الانحلال الحراري.
Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Environmental Chemical EngineeringConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Environmental Chemical EngineeringConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ArgentinaPublisher:Elsevier BV Authors: Fernandez Brizuela, Anabel Alejandra; Saffe Pinto, María Alejandra; Pereyra, Regina; Mazza, German Delfor; +1 AuthorsFernandez Brizuela, Anabel Alejandra; Saffe Pinto, María Alejandra; Pereyra, Regina; Mazza, German Delfor; Rodríguez, Rosa;handle: 11336/47001
Fil: Fernandez Brizuela, Anabel Alejandra. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina
CONICET Digital arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.06.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.06.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Elsevier BV Authors: Baldán, Yanina Lorena; Fernandez, Anabe; Reyes Urrutia, Ramón Andrés; Fabani, Maria Paula; +2 AuthorsBaldán, Yanina Lorena; Fernandez, Anabe; Reyes Urrutia, Ramón Andrés; Fabani, Maria Paula; Rodriguez, Rosa Ana; Mazza, German Delfor;A macro-thermogravimetric analysis (macro-TGA) was applied to analyse the non-isothermal drying of different bio-wastes (quince solid waste, grape marc and pumpkin shell from different enterprises located in San Juan Province, Argentina). The experimental data were obtained at three heating rates (5, 10 and 15 K/min) and two different initial moisture contents (30 and 50% w/w). These data were fitted using the Coats-Redfern and Sharp methods. The D2 model showed the best fitting for all experiments when using the Coats-Redfern method. It is assumed that drying occurs on the solid boundary. The predicted Ea values ranged from 43.60 to 64.50 kJ/mol for the three bio-wastes under the different experimental conditions. The Ea value slightly increases with the increase in heating rate because the wastes require more energy to undergo drying. Deff increases moderately with temperature at the beginning of the dehydration process; then, this increasing behaviour is significant due to the loss of continuous moisture channels. Otherwise, Deff increases with the initial moisture content, showing that the humidity of the samples did not reach the saturation content.
CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1988Publisher:Elsevier BV Authors: John G. Yates; Guillermo Fernando Barreto; Germán Mazza;Abstract Bed collapse experiments are interpreted by a three-phase model of a gas-fluidized bed. Application of the model leads to a relationship between bed voidage in the sedimentation zone of the collapse and the properties of the emulsion and bubble phases of the bed prior to the collapse. Experimental results show that for beds of small particles fluidized under pressure the flow of gas through the emulsion phase is higher than that expected on the basis of existing theories, but it is shown that average rise velocities of bubbles may be obtained from results of bed collapse measurements.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 1988 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(88)80057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 1988 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(88)80057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Argentina, FrancePublisher:Elsevier BV Reyes Urrutia, Andrés; Benoit, Hadrien; Zambon, Mariana; Gauthier, Daniel; Flamant, Gilles; Mazza, Germán;handle: 11336/61355
In the search for greater efficiency and storage capacity improvements in solar energy concentration plants, a new concept for fluid transfer was proposed. This concept consists of a dense suspension of SiC particles (dp = 6.4 × 10−5 m) that is air fluidized, which allows operation at higher temperatures than the fluids currently used, such as molten salts, water, oils and air. The suspension, as a fluid, also provides energy storage. The upward flow of the SiC–air suspension inside a steel tube is achieved using a circulating fluidized bed dense regime. Concentrated solar radiation impinges the walls of the tube, increasing the temperature of the granular material up to 200–250 °C. The system in this study is part of a prototype in the PROMES Laboratory in France. Maintaining low fluidization velocities guarantees high solid fractions throughout the tube (0.28–0.45). This study simulates heat transfer between the wall and the suspension using computational fluid dynamics (CFD) (ANSYS-Fluent 14.5) for different operating conditions. The Euler–Euler model is used as the multi-phase model. The average experimental temperature in the emulsion at the exit of the heat transfer zone compares well with the temperature obtained in the CFD simulation. The global heat transfer coefficients obtained in the simulation are in good agreement with those obtained experimentally for all operating conditions. These results show that the developed simulation approach is a good representation of the real process and provides relevant information related to the movement of particles in the tube and its relation to heat transfer in the prototype.
LAReferencia - Red F... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverChemical Engineering Research and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2015.12.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverChemical Engineering Research and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2015.12.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ArgentinaPublisher:Elsevier BV Gilles Flamant; Quentin Falcoz; Daniel J. Gauthier; Jose Miguel Soria; Jose Miguel Soria; Germán Mazza;The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.
LAReferencia - Red F... arrow_drop_down Journal of Hazardous MaterialsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Journal of Hazardous MaterialsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ArgentinaPublisher:MDPI AG Authors: Juan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; +4 AuthorsJuan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; Yimin Deng; Jan Baeyens; Rosa Rodriguez; Germán Mazza;doi: 10.3390/pr10020339
handle: 11336/216407
Spent grains from microbreweries are mostly formed by malting barley (or malt) and are suitable for a further valorization process. Transforming spent grains from waste to raw materials, for instance, in the production of nontraditional flour, requires a previous drying process. A natural convection solar dryer (NCSD) was evaluated as an alternative to a conventional electric convective dryer (CECD) for the dehydration process of local microbrewers’ spent grains. Two types of brewer’s spent grains (BSG; Golden ale and Red ale) were dried with both systems, and sustainability indices, specific energy consumption (eC), and CO2 emissions were calculated and used to assess the environmental advantages and disadvantages of the NCSD. Then, suitable models (empirical, neural networks, and computational fluid dynamics) were used to simulate both types of drying processes under different conditions. The drying times were 30–85 min (depending on the drying temperature, 363.15 K and 333.15 K) and 345–430 min (depending on the starting daytime hour at which the drying process began) for the CECD and the NCSD, respectively. However, eC and CO2 emissions for the CECD were 1.68–1.88 · 10−3 (kW h)/kg and 294.80–410.73 kg/(kW h) for the different drying temperatures. Using the NCSD, both indicators were null, considering this aspect as an environmental benefit.
Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ArgentinaPublisher:Elsevier BV Authors: J. Soria; R. Li; G. Flamant; G.D. Mazza;handle: 11336/127350
Abstract The growing interest in syngas production from biomass has extended research towards solar-driven pyrolysis taking place at high temperature and heating rate, due to its high efficiency and environmental advantages. The aim of this work is to experimentally study and compare the effect of pellet size (5, 10 and 15 mm height) on product yields (liquid, char and gas), gas composition (H2, CO, CO2, CH4) and tar secondary reactions during fast solar pyrolysis of sawdust pellets (800, 1200 and 1600 °C and heating rates of 10 and 50 °C/s). Additionally, the influence of pellet height on syngas quality is analyzed by parameters such as H2/CO, CH4/H2 ratios, mechanical gas efficiency and carbon conversion efficiency, focused on methanol production. An analysis based on characteristic times and dimensionless numbers is also performed to estimate the rate-controlling phenomena. Experimental results showed that, for temperatures below 1200 °C, there were no significant differences in the gas yield for the three pellet heights. However, the gas product distribution was influenced by the pellet size even at 800 °C. A further increase in temperature emphasized the influence of the pellet height on both gas yield and gas composition. Therefore, it can be argued that, in order to improve the gas yield and the quality of the syngas, the fast pyrogasification of large particles is advisable.
CONICET Digital arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2019.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2019.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ArgentinaPublisher:Elsevier BV Soria, Jose Miguel; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, German Delfor;Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Anabel Fernandez; Daniela Zalazar-García; Carla Lorenzo-Doncel; Diego Mauricio Yepes Maya; +3 AuthorsAnabel Fernandez; Daniela Zalazar-García; Carla Lorenzo-Doncel; Diego Mauricio Yepes Maya; Electo Eduardo Silva Lora; Rosa Rodriguez; Germán Mazza;doi: 10.3390/su16104056
This study addresses the co-pyrogasification of municipal solid waste (MSW) from the Environmental Technology Park, San Juan, Argentina. This process involves heating waste at high temperatures in a low-oxygen or oxygen-free atmosphere as a sustainable strategy for waste management and energy generation. The principal objective is to focus on understanding the MSW co-pyrogasification kinetics to enhance performance in reactor design. A representative sample of MSW collected over a month was analyzed, focusing on the variation in mass proportions of plastic, organic matter, and paper. The empirical methodology included the deconvolution of macro-TGA curves and deep learning algorithms to predict and validate macro-TG data during co-pyrogasification. The findings reveal that MSW is a solid matrix more easily treated on thermochemical platforms, with kinetic and thermodynamic parameters favoring its processing. This approach suggests that MSW co-pyrogasification may represent a feasible alternative for resource recovery and bioenergy production, supporting the policies for the transition to a cleaner future and a circular economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu