- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 AustraliaPublisher:Elsevier BV Rupesh Baniya; Rocky Talchabhadel; Jeeban Panthi; Ganesh R Ghimire; Sanjib Sharma; Prithvi Dhwoj Khadka; Sanghoon Shin; Yadu Pokhrel; Utsav Bhattarai; Rajaram Prajapati; Bhesh Raj Thapa; Ramesh Kumar Maskey;There is a pressing need for a transition from fossil fuel to renewable energy to meet the increasing energy demands and reduce greenhouse gas (GHG) emissions. The Himalayas possess substantial renewable energy potential that can be harnessed through hydropower projects due to its peculiar topographic characteristics and abundant water resources. However, the current exploitation rate is low owing to the predominance of run-of-river hydropower systems to support the power system. The utility-scale storage facility is crucial in the load scenario of an integrated power system to manage diurnal variation, peak demand, and penetration of intermittent energy sources. In this study, we first identify the potential of pumped storage hydropower across Nepal (a central Himalayan country) under multiple configurations by pairing lakes, hydropower projects, rivers, and available flat terrains. We then identify technically feasible pairs from those of potential locations. Infrastructural, environmental, operational, and other technical constraints govern the choice of feasible locations. We find the flat land-to-river configuration most promising than other configurations. Our results provide insight into the potential of pumped storage hydropower and are of practical importance in planning sustainable power systems in the Himalayas and beyond.
https://dx.doi.org/1... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 11 Jul 2022 Netherlands, Netherlands, Austria, Germany, BelgiumPublisher:IOP Publishing Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkJulien Boulange; Naota Hanasaki; Yusuke Satoh; Tokuta Yokohata; Hideo Shiogama; Peter Burek; Wim Thiery; Dieter Gerten; Hannes Müller Schmied; Yoshihide Wada; Simon N Gosling; Yadu Pokhrel; Niko Wanders;Future flood and drought risks have been predicted to transition from moderate to high levels at global warmings of 1.5 °C and 2.0 °C above pre-industrial levels, respectively. However, these results were obtained by approximating the equilibrium climate using transient simulations with steadily warming. This approach was recently criticised due to the warmer global land temperature and higher mean precipitation intensities of the transient climate in comparison with the equilibrium climate. Therefore, it is unclear whether floods and droughts projected under a transient climate can be systematically substituted for those occurring in an equilibrated climate. Here, by employing a large ensemble of global hydrological models (HMs) forced by global climate models, we assess the validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Differences in flood characteristics under transient and equilibrium climates could be largely ascribed to natural variability, indicating that the floods derived from a transient climate reasonably approximate the floods expected in an equally warm, equilibrated climate. By contrast, significant differences in drought intensity between transient and equilibrium climates were detected over a larger global land area than expected from natural variability. Despite the large differences among HMs in representing the low streamflow regime, we found that the drought intensities occurring under a transient climate may not validly represent the intensities in an equally warm equilibrated climate for approximately 6.7% of the global land area.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 51 Powered bymore_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Australia, Australia, AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., EC | TERRACARB, NSF | CAREER: Humans, Water, an...ARC| Discovery Early Career Researcher Award - Grant ID: DE210100117 ,EC| TERRACARB ,NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkKattel, Giri R.; Paszkowski, Amelie; Pokhrel, Yadu; Wu, Wenyan; Li, Dongfeng; Rao, Mukund P.;handle: 2440/138855 , 11343/338492
AbstractThe high‐mountain system, a storehouse of major waterways that support important ecosystem services to about 1.5 billion people in the Himalaya, is facing unprecedented challenges due to climate change during the 21st century. Intensified floods, accelerating glacial retreat, rapid permafrost degradation, and prolonged droughts are altering the natural hydrological balances and generating unpredictable spatial and temporal distributions of water availability. Anthropogenic activities are adding further pressure onto Himalayan waterways. The fundamental question of waterway management in this region is therefore how this hydro‐meteorological transformation, caused by climate change and anthropogenic perturbations, can be tackled to find avenues for sustainability. This requires a framework that can diagnose threats at a range of spatial and temporal scales and provide recommendations for strong adaptive measures for sustainable future waterways. This focus paper assesses the current literature base to bring together our understanding of how recent climatic changes have threatened waterways in the Asian Himalayas, how society has been responding to rapidly changing waterway conditions, and what adaptive options are available for the region. The study finds that Himalayan waterways are crucial in protecting nature and society. The implementation of integrated waterways management measures, the rapid advancement of waterway infrastructure technologies, and the improved governance of waterways are more critical than ever.This article is categorized under: Engineering Water > Sustainable Engineering of Water
Wiley Interdisciplin... arrow_drop_down Columbia University Academic CommonsArticle . 2023Full-Text: https://doi.org/10.7916/8dhw-8m25Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Columbia University Academic CommonsArticle . 2023Full-Text: https://doi.org/10.7916/8dhw-8m25Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Austria, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkYusuke Satoh; Kei Yoshimura; Yadu Pokhrel; Hyungjun Kim; Hideo Shiogama; Tokuta Yokohata; Naota Hanasaki; Yoshihide Wada; Peter Burek; Edward Byers; Hannes Müller Schmied; Dieter Gerten; Sebastian Ostberg; Simon Newland Gosling; Julien Eric Stanslas Boulange; Taikan Oki;AbstractDroughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.
IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Ahmed Elkouk; Yadu Pokhrel; Yusuke Satoh; Lhoussaine Bouchaou;pmid: 35636116
Climate change is expected to exacerbate drought conditions over many global regions. However, the future risk posed by droughts depends not only on the climate-induced changes but also on the changes in societal exposure and vulnerability to droughts. Here we illustrate how the consideration of human vulnerability alters global drought risk associated with runoff (hydrological) and soil moisture (agriculture) droughts during the 21st-century. We combine the changes in drought frequency, population growth, and human development as a proxy of vulnerability to project global drought risk under plausible climate and socioeconomic development pathways. Results indicate that the shift toward a pathway of high greenhouse gas emissions and socioeconomic inequality leads to i) increased population exposure to runoff and soil moisture droughts by 81% and seven folds, respectively, and ii) a stagnation of human development. These consequences are more pronounced for populations living in low than in very high human development countries. In particular, Sub-Saharan Africa and South Asia, where the majority of the world's less developed countries are located, fare the worst in terms of future drought risk. The disparity in risk between low and very high human development countries can be substantially reduced in the presence of a shift toward a world of rapid and sustainable development that actively reduces social inequality and emissions. Our results underscore the importance of rapid human development in hotspots of drought risk where effective adaptation is most needed to reduce future drought impacts.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Mattos, Caio R. C.; Hirota, Marina; Oliveira, Rafael S.; Flores, Bernardo M.; Miguez-Macho, Gonzalo; Pokhrel, Yadu; Fan, Ying;This dataset contains the scripts and data used for the paper "Double stress of waterlogging and drought drives forest–savanna coexistence", PNAS (2023). The work represents a collaborative effort from the Department of Earth and Planetary Sciences at Rutgers University, the Department of Physics and Graduate Program in Ecology at the Federal University of Santa Catarina, the Department of Plant Biology at the University of Campinas, the Non-Linear Physics Group at the University of Santiago de Compostela, and the Department of Civil and Environmental Engineering at Michigan State University. The dataset includes the raw data files for analyses. Scripts to analyze and plot the data are available on https://github.com/caiomattos/doublestress. Please refer to the paper for a complete description of the methods and results associated with this dataset. If the data presented here is central to your results, please consider inviting the data creators for a possible co-authorship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7950933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7950933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:American Geophysical Union (AGU) Hannes Müller Schmied; Linli An; Jianping Huang; Romain Hugonnet; Romain Hugonnet; Romain Hugonnet; Etienne Berthier; Yadu Pokhrel; Jida Wang; Yoshihide Wada; Denise Cáceres; Guolong Zhang; Chunqiao Song; Haipeng Yu;doi: 10.1029/2021gl095035
AbstractDeclines in terrestrial water storage (TWS) exacerbate regional water scarcity and global sea level rise. Increasing evidence has shown that recent TWS declines are substantial in ecologically fragile drylands, but the mechanism remains unclear. Here, by synergizing satellite observations and model simulations, we quantitatively attribute TWS trends during 2002–2016 in major climate zones to three mechanistic drivers: climate variability, climate change, and direct human activities. We reveal that climate variability had transitory and limited impacts (<20%), whereas warming‐induced glacier loss and direct human activities dominate the TWS loss in humid regions (∼103%) and drylands (∼64%), respectively. In non‐glacierized humid areas, climate variability generated regional water gains that offset synchronous TWS declines. Yet in drylands, TWS losses are enduring and more widespread with direct human activities, particularly unsustainable groundwater abstraction. Our findings highlight the substantive human footprints on the already vulnerable arid regions and an imperative need for improved dryland water conservation.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03671319Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03671319Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:American Geophysical Union (AGU) Funded by:NSF | Collaborative Research: A..., NSF | Collaborative Research: A...NSF| Collaborative Research: Anthropogenic water management, Climate Change, and Environmental Sustainability in the Southwestern US (ACCESS) ,NSF| Collaborative Research: Anthropogenic water management, Climate Change, and Environmental Sustainability in the Southwestern US (ACCESS)Ahmed Elkouk; Yadu Pokhrel; Ben Livneh; Elizabeth Payton; Lifeng Luo; Yifan Cheng; Katherine Dagon; Sean Swenson; Andrew W. Wood; David M. Lawrence; Wim Thiery;AbstractCrucial to the assessment of future water security is how the land model component of Earth System Models partition precipitation into evapotranspiration and runoff, and the sensitivity of this partitioning to climate. This sensitivity is not explicitly constrained in land models nor the model parameters important for this sensitivity identified. Here, we seek to understand parametric controls on runoff sensitivity to precipitation and temperature in a state‐of‐the‐science land model, the Community Land Model version 5 (CLM5). Process‐parameter interactions underlying these two climate sensitivities are investigated using the sophisticated variance‐based sensitivity analysis. This analysis focuses on three snow‐dominated basins in the Colorado River headwaters region, a prominent exemplar where land models display a wide disparity in runoff sensitivities. Runoff sensitivities are dominated by indirect or interaction effects between a few parameters of subsurface, snow, and plant processes. A focus on only one kind of parameters would therefore limit the ability to constrain the others. Surface runoff exhibits strong sensitivity to parameters of snow and subsurface processes. Constraining snow simulations would require explicit representation of the spatial variability across large elevation gradients. Subsurface runoff and soil evaporation exhibit very similar sensitivities. Model calibration against the subsurface runoff flux would therefore constrain soil evaporation. The push toward a mechanistic treatment of processes in CLM5 have dampened the sensitivity of parameters compared to earlier model versions. A focus on the sensitive parameters and processes identified here can help characterize and reduce uncertainty in water resource sensitivity to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024wr037718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024wr037718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United StatesPublisher:MDPI AG Yadu Pokhrel; Mateo Burbano; Jacob Roush; Hyunwoo Kang; Venkataramana Sridhar; David Hyndman;doi: 10.3390/w10030266
handle: 10919/82539
The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and ecological systems across the basin. Studies have shown that some of the dams built in the tributaries and the main stem of the upper Mekong have already caused basin-wide impacts by altering the magnitude and seasonality of flows, blocking sediment transport, affecting fisheries and livelihoods of downstream inhabitants, and changing the flood pulse to the Tonle Sap Lake. There are hundreds of additional dams planned for the near future that would result in further changes, potentially causing permanent damage to the highly productive agricultural systems and fisheries, as well as the riverine and floodplain ecosystems. Several studies have examined the potential impacts of existing and planned dams but the integrated effects of the dams when combined with the adverse hydrologic consequences of climate change remain largely unknown. Here, we provide a detailed review of the existing literature on the changes in climate, land use, and dam construction and the resulting impacts on hydrological, agricultural, and ecological systems across the Mekong. The review provides a basis to better understand the effects of climate change and accelerating human water management activities on the coupled hydrological-agricultural-ecological systems, and identifies existing challenges to study the region’s Water, Energy, and Food (WEF) nexus with emphasis on the influence of future dams and projected climate change. In the last section, we synthesize the results and highlight the urgent need to develop integrated models to holistically study the coupled natural-human systems across the basin that account for the impacts of climate change and water infrastructure development. This review provides a framework for future research in the Mekong, including studies that integrate hydrological, agricultural, and ecological modeling systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10030266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 199 citations 199 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10030266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 AustraliaPublisher:Elsevier BV Rupesh Baniya; Rocky Talchabhadel; Jeeban Panthi; Ganesh R Ghimire; Sanjib Sharma; Prithvi Dhwoj Khadka; Sanghoon Shin; Yadu Pokhrel; Utsav Bhattarai; Rajaram Prajapati; Bhesh Raj Thapa; Ramesh Kumar Maskey;There is a pressing need for a transition from fossil fuel to renewable energy to meet the increasing energy demands and reduce greenhouse gas (GHG) emissions. The Himalayas possess substantial renewable energy potential that can be harnessed through hydropower projects due to its peculiar topographic characteristics and abundant water resources. However, the current exploitation rate is low owing to the predominance of run-of-river hydropower systems to support the power system. The utility-scale storage facility is crucial in the load scenario of an integrated power system to manage diurnal variation, peak demand, and penetration of intermittent energy sources. In this study, we first identify the potential of pumped storage hydropower across Nepal (a central Himalayan country) under multiple configurations by pairing lakes, hydropower projects, rivers, and available flat terrains. We then identify technically feasible pairs from those of potential locations. Infrastructural, environmental, operational, and other technical constraints govern the choice of feasible locations. We find the flat land-to-river configuration most promising than other configurations. Our results provide insight into the potential of pumped storage hydropower and are of practical importance in planning sustainable power systems in the Himalayas and beyond.
https://dx.doi.org/1... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 11 Jul 2022 Netherlands, Netherlands, Austria, Germany, BelgiumPublisher:IOP Publishing Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkJulien Boulange; Naota Hanasaki; Yusuke Satoh; Tokuta Yokohata; Hideo Shiogama; Peter Burek; Wim Thiery; Dieter Gerten; Hannes Müller Schmied; Yoshihide Wada; Simon N Gosling; Yadu Pokhrel; Niko Wanders;Future flood and drought risks have been predicted to transition from moderate to high levels at global warmings of 1.5 °C and 2.0 °C above pre-industrial levels, respectively. However, these results were obtained by approximating the equilibrium climate using transient simulations with steadily warming. This approach was recently criticised due to the warmer global land temperature and higher mean precipitation intensities of the transient climate in comparison with the equilibrium climate. Therefore, it is unclear whether floods and droughts projected under a transient climate can be systematically substituted for those occurring in an equilibrated climate. Here, by employing a large ensemble of global hydrological models (HMs) forced by global climate models, we assess the validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Differences in flood characteristics under transient and equilibrium climates could be largely ascribed to natural variability, indicating that the floods derived from a transient climate reasonably approximate the floods expected in an equally warm, equilibrated climate. By contrast, significant differences in drought intensity between transient and equilibrium climates were detected over a larger global land area than expected from natural variability. Despite the large differences among HMs in representing the low streamflow regime, we found that the drought intensities occurring under a transient climate may not validly represent the intensities in an equally warm equilibrated climate for approximately 6.7% of the global land area.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 51 Powered bymore_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Australia, Australia, AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., EC | TERRACARB, NSF | CAREER: Humans, Water, an...ARC| Discovery Early Career Researcher Award - Grant ID: DE210100117 ,EC| TERRACARB ,NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkKattel, Giri R.; Paszkowski, Amelie; Pokhrel, Yadu; Wu, Wenyan; Li, Dongfeng; Rao, Mukund P.;handle: 2440/138855 , 11343/338492
AbstractThe high‐mountain system, a storehouse of major waterways that support important ecosystem services to about 1.5 billion people in the Himalaya, is facing unprecedented challenges due to climate change during the 21st century. Intensified floods, accelerating glacial retreat, rapid permafrost degradation, and prolonged droughts are altering the natural hydrological balances and generating unpredictable spatial and temporal distributions of water availability. Anthropogenic activities are adding further pressure onto Himalayan waterways. The fundamental question of waterway management in this region is therefore how this hydro‐meteorological transformation, caused by climate change and anthropogenic perturbations, can be tackled to find avenues for sustainability. This requires a framework that can diagnose threats at a range of spatial and temporal scales and provide recommendations for strong adaptive measures for sustainable future waterways. This focus paper assesses the current literature base to bring together our understanding of how recent climatic changes have threatened waterways in the Asian Himalayas, how society has been responding to rapidly changing waterway conditions, and what adaptive options are available for the region. The study finds that Himalayan waterways are crucial in protecting nature and society. The implementation of integrated waterways management measures, the rapid advancement of waterway infrastructure technologies, and the improved governance of waterways are more critical than ever.This article is categorized under: Engineering Water > Sustainable Engineering of Water
Wiley Interdisciplin... arrow_drop_down Columbia University Academic CommonsArticle . 2023Full-Text: https://doi.org/10.7916/8dhw-8m25Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Columbia University Academic CommonsArticle . 2023Full-Text: https://doi.org/10.7916/8dhw-8m25Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Austria, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkYusuke Satoh; Kei Yoshimura; Yadu Pokhrel; Hyungjun Kim; Hideo Shiogama; Tokuta Yokohata; Naota Hanasaki; Yoshihide Wada; Peter Burek; Edward Byers; Hannes Müller Schmied; Dieter Gerten; Sebastian Ostberg; Simon Newland Gosling; Julien Eric Stanslas Boulange; Taikan Oki;AbstractDroughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.
IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Ahmed Elkouk; Yadu Pokhrel; Yusuke Satoh; Lhoussaine Bouchaou;pmid: 35636116
Climate change is expected to exacerbate drought conditions over many global regions. However, the future risk posed by droughts depends not only on the climate-induced changes but also on the changes in societal exposure and vulnerability to droughts. Here we illustrate how the consideration of human vulnerability alters global drought risk associated with runoff (hydrological) and soil moisture (agriculture) droughts during the 21st-century. We combine the changes in drought frequency, population growth, and human development as a proxy of vulnerability to project global drought risk under plausible climate and socioeconomic development pathways. Results indicate that the shift toward a pathway of high greenhouse gas emissions and socioeconomic inequality leads to i) increased population exposure to runoff and soil moisture droughts by 81% and seven folds, respectively, and ii) a stagnation of human development. These consequences are more pronounced for populations living in low than in very high human development countries. In particular, Sub-Saharan Africa and South Asia, where the majority of the world's less developed countries are located, fare the worst in terms of future drought risk. The disparity in risk between low and very high human development countries can be substantially reduced in the presence of a shift toward a world of rapid and sustainable development that actively reduces social inequality and emissions. Our results underscore the importance of rapid human development in hotspots of drought risk where effective adaptation is most needed to reduce future drought impacts.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Mattos, Caio R. C.; Hirota, Marina; Oliveira, Rafael S.; Flores, Bernardo M.; Miguez-Macho, Gonzalo; Pokhrel, Yadu; Fan, Ying;This dataset contains the scripts and data used for the paper "Double stress of waterlogging and drought drives forest–savanna coexistence", PNAS (2023). The work represents a collaborative effort from the Department of Earth and Planetary Sciences at Rutgers University, the Department of Physics and Graduate Program in Ecology at the Federal University of Santa Catarina, the Department of Plant Biology at the University of Campinas, the Non-Linear Physics Group at the University of Santiago de Compostela, and the Department of Civil and Environmental Engineering at Michigan State University. The dataset includes the raw data files for analyses. Scripts to analyze and plot the data are available on https://github.com/caiomattos/doublestress. Please refer to the paper for a complete description of the methods and results associated with this dataset. If the data presented here is central to your results, please consider inviting the data creators for a possible co-authorship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7950933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7950933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:American Geophysical Union (AGU) Hannes Müller Schmied; Linli An; Jianping Huang; Romain Hugonnet; Romain Hugonnet; Romain Hugonnet; Etienne Berthier; Yadu Pokhrel; Jida Wang; Yoshihide Wada; Denise Cáceres; Guolong Zhang; Chunqiao Song; Haipeng Yu;doi: 10.1029/2021gl095035
AbstractDeclines in terrestrial water storage (TWS) exacerbate regional water scarcity and global sea level rise. Increasing evidence has shown that recent TWS declines are substantial in ecologically fragile drylands, but the mechanism remains unclear. Here, by synergizing satellite observations and model simulations, we quantitatively attribute TWS trends during 2002–2016 in major climate zones to three mechanistic drivers: climate variability, climate change, and direct human activities. We reveal that climate variability had transitory and limited impacts (<20%), whereas warming‐induced glacier loss and direct human activities dominate the TWS loss in humid regions (∼103%) and drylands (∼64%), respectively. In non‐glacierized humid areas, climate variability generated regional water gains that offset synchronous TWS declines. Yet in drylands, TWS losses are enduring and more widespread with direct human activities, particularly unsustainable groundwater abstraction. Our findings highlight the substantive human footprints on the already vulnerable arid regions and an imperative need for improved dryland water conservation.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03671319Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03671319Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:American Geophysical Union (AGU) Funded by:NSF | Collaborative Research: A..., NSF | Collaborative Research: A...NSF| Collaborative Research: Anthropogenic water management, Climate Change, and Environmental Sustainability in the Southwestern US (ACCESS) ,NSF| Collaborative Research: Anthropogenic water management, Climate Change, and Environmental Sustainability in the Southwestern US (ACCESS)Ahmed Elkouk; Yadu Pokhrel; Ben Livneh; Elizabeth Payton; Lifeng Luo; Yifan Cheng; Katherine Dagon; Sean Swenson; Andrew W. Wood; David M. Lawrence; Wim Thiery;AbstractCrucial to the assessment of future water security is how the land model component of Earth System Models partition precipitation into evapotranspiration and runoff, and the sensitivity of this partitioning to climate. This sensitivity is not explicitly constrained in land models nor the model parameters important for this sensitivity identified. Here, we seek to understand parametric controls on runoff sensitivity to precipitation and temperature in a state‐of‐the‐science land model, the Community Land Model version 5 (CLM5). Process‐parameter interactions underlying these two climate sensitivities are investigated using the sophisticated variance‐based sensitivity analysis. This analysis focuses on three snow‐dominated basins in the Colorado River headwaters region, a prominent exemplar where land models display a wide disparity in runoff sensitivities. Runoff sensitivities are dominated by indirect or interaction effects between a few parameters of subsurface, snow, and plant processes. A focus on only one kind of parameters would therefore limit the ability to constrain the others. Surface runoff exhibits strong sensitivity to parameters of snow and subsurface processes. Constraining snow simulations would require explicit representation of the spatial variability across large elevation gradients. Subsurface runoff and soil evaporation exhibit very similar sensitivities. Model calibration against the subsurface runoff flux would therefore constrain soil evaporation. The push toward a mechanistic treatment of processes in CLM5 have dampened the sensitivity of parameters compared to earlier model versions. A focus on the sensitive parameters and processes identified here can help characterize and reduce uncertainty in water resource sensitivity to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024wr037718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024wr037718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United StatesPublisher:MDPI AG Yadu Pokhrel; Mateo Burbano; Jacob Roush; Hyunwoo Kang; Venkataramana Sridhar; David Hyndman;doi: 10.3390/w10030266
handle: 10919/82539
The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and ecological systems across the basin. Studies have shown that some of the dams built in the tributaries and the main stem of the upper Mekong have already caused basin-wide impacts by altering the magnitude and seasonality of flows, blocking sediment transport, affecting fisheries and livelihoods of downstream inhabitants, and changing the flood pulse to the Tonle Sap Lake. There are hundreds of additional dams planned for the near future that would result in further changes, potentially causing permanent damage to the highly productive agricultural systems and fisheries, as well as the riverine and floodplain ecosystems. Several studies have examined the potential impacts of existing and planned dams but the integrated effects of the dams when combined with the adverse hydrologic consequences of climate change remain largely unknown. Here, we provide a detailed review of the existing literature on the changes in climate, land use, and dam construction and the resulting impacts on hydrological, agricultural, and ecological systems across the Mekong. The review provides a basis to better understand the effects of climate change and accelerating human water management activities on the coupled hydrological-agricultural-ecological systems, and identifies existing challenges to study the region’s Water, Energy, and Food (WEF) nexus with emphasis on the influence of future dams and projected climate change. In the last section, we synthesize the results and highlight the urgent need to develop integrated models to holistically study the coupled natural-human systems across the basin that account for the impacts of climate change and water infrastructure development. This review provides a framework for future research in the Mekong, including studies that integrate hydrological, agricultural, and ecological modeling systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10030266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 199 citations 199 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10030266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu