- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Mi-Lim Kim; Keon-Jun Park; Sung-Yong Son;The energy consumed in buildings constitutes more than half of the total electricity consumption and is highly correlated with the number of occupants; therefore, it is necessary to use occupancy information in energy consumption analysis. However, the number of occupants may not be accurate owing to measurement errors caused by various factors, such as the locations of sensors or cameras and the communication environment. In this study, occupancy was measured using an object recognition camera, the number of people was additionally collected by manual aggregation, measurement error in occupancy count was analyzed, and the true count was estimated using a deep learning model. The energy consumption based on occupancy was predicted using the measured and estimated values. To this end, deep learning was used to predict energy consumption after analyzing the correlation between occupancy and energy consumption. Results showed that the performance of occupancy estimation was 1.9 based on RMSE, which is a 71.1% improvement compared to the original occupancy sensing. The RMSE of predicted energy consumption based on the estimated occupancy was 56.0, which is a 5.2% improvement compared to the original energy estimation.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Eunsung Oh; Sung-Yong Son;doi: 10.3390/app12052750
The concept of a virtual energy storage system (VESS) is based on the sharing of a large energy storage system by multiple units; however, the capacity allocation for each unit limits the operation performance of the VESS. This study proposes an operation strategy of a dynamic VESS for smart energy communities. The proposed VESS operation strategy considers the usage-limited constraint rather than the capacity allocation constraint and it guarantees the usage of VESS resources of each participant for an operation period. Therefore, the degrees of freedom for VESS operation can be increased at each operation time. The dynamic VESS operation problem is formulated as a mixed-integer linear problem that could be solved optimally by applying gradient methods and dual decomposition. The dataset of a VESS in Korea is used for simulation. The simulation results demonstrate that, when the proposed operation strategy is used, the cost efficiency achieved is more than twice that achieved when the existing VESS operation strategy is used. Furthermore, the proposed strategy accurately reflects the characteristics of the participants; thus, more units can participate in the VESS operation service. The proposed VESS operation can improve the system performance of the utility grid and increase the net benefit of the participants.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/5/2750/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12052750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/5/2750/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12052750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jeong-Un Yu; Kyu-Sang Cho; Sung-Won Park; Sung-Yong Son;doi: 10.3390/en17246249
Research on digital twins (DTs) in the power system field has mainly focused on implementing DTs for specific resources, while few studies on electric vehicle (EV)-based DT implementation have considered integration and interoperability between systems. This study introduces a DT-based EV system operation framework to address the aforementioned research gap. The framework implements individual EVs, charging stations, and charging station operators (CPOs) as DTs, enabling integrated operation with the power grid. The DT-based EV agent supports independent decision-making on power service participation by considering location information, distance, charging amount, spare time, and incentives. In addition, the CPO can establish an optimal incentive strategy to induce EV users to participate in grid power services. The proposed DT systems map information between EVs, charging stations, and the grid, enabling analysis and verification of the impact of participants on charging station operation, grid stability, and economic efficiency in an independent environment. The effectiveness and usability of the proposed framework were verified through a case study on an incentive-based demand response program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Hye-Seung Han; Eunsung Oh; Sung-Yong Son;doi: 10.3390/en11071651
Electric vehicles (EVs), one of the biggest innovations in the automobile industry, are considered as a demand source as well as a supply source for power grids. Studies have been conducted on the effect of EV charging and utilization of EVs to control grid peak or to solve the intermittency problem of renewable generators. However, most of these studies focus on only one aspect of EVs. In this work, we demonstrate that the increased demand resulting from EV charging can be alleviated by utilizing idle EV charging stations as a vehicle-to-grid (V2G) service. The work is performed based on data from Jeju Island, Korea. The EV demand pattern in 2030 is modeled and forecasted using EV charging patterns from historical data and the EV and charging station deployment plan of Jeju Island’s local government. Then, using a Monte Carlo simulation, charging and V2G scenarios are generated, and the effect of V2G on peak time is analyzed. In addition, a sensitivity analysis is performed for EV and charging station deployment. The results show that the EV charging demand increase can be resolved within the EV ecosystem.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1651/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1651/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Eunsung Oh; Sung-Yong Son;doi: 10.3390/en15041259
Digital technologies, especially information and communication technologies, paved the way for social welfare by providing efficient and effective means for services. In the energy sector, advanced metering infrastructures (AMIs) are essential for providing various services through information measurement. In this article, we focus on the deployment of an AMI in multi-dwelling units where automated meter reading (AMR) infrastructures are installed. In particular, we explore whether the AMR should substitute the AMI with few alterations, while ensuring desirable accuracy. To determine the adequacy of technology, information measurement performance, service performance, and implementation cost are used as the indicators. Through a case study using real data recorded in Korea, we quantitatively estimate that AMR-based information measurement can exhibit adequate performance and performance degradation of less than 1% in a service environment utilizing AMI with a low-cost investment. We also discuss several technologies and implementation issues in the upcycling of AMR for more reliable service. This study provides a guide for when configuring an information measurement system for a new energy service.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Eunsung Oh; Sung-Yong Son;This study presents peer-to-peer (P2P) energy transaction mechanisms to maximize social welfare considering the uncertainty and profit fairness of the players. The P2P energy transaction problem is formulated as a P2P energy transaction pair matching and the determination of the P2P transaction price. To solve the problem, the optimal condition to maximize social welfare is determined using stochastic P2P energy transaction performance analysis based on the uncertainty characteristics. The analysis results show that social welfare is maximized to match the producer and consumer pairs that have similar demand characteristics; the P2P transaction price balances the profit fairness between the pair. Using these results, two centralized P2P energy transaction mechanisms are proposed by modifying the optimization problem. Moreover, a decentralized P2P energy transaction mechanism that operates in a distributed manner is suggested with the operational signal flow for the implementation of the mechanism. The simulation results show that the centralized and decentralized mechanisms have near optimal performance, with less than a 0.5% and 1% optimal gap compared to the optimal solution that requires perfect information including uncertainty, respectively. However, the decentralized mechanism is less computationally complex and uses less information than the centralized mechanisms; consequently, it can alleviate the operational burden and security and privacy problems. In addition, the results show that the performance of P2P energy transaction is related to the relative demand ratio between the producer and consumer. The optimal condition and results suggest a guide to the design of the P2P energy transaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3041838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3041838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Dae-Sung Lee; Sung-Yong Son;doi: 10.3390/su16104069
Photovoltaic (PV) power is subject to variability, influenced by factors such as meteorological conditions. This variability introduces uncertainties in forecasting, underscoring the necessity for enhanced forecasting models to support the large-scale integration of PV systems. Moreover, the presence of missing data during the model development process significantly impairs model performance. To address this, it is essential to impute missing data from the collected datasets before advancing with model development. Recent advances in imputation methods, including Multivariate Imputation by Chained Equations (MICEs), K-Nearest Neighbors (KNNs), and Generative Adversarial Imputation Networks (GAINs), have exhibited commendable efficacy. Nonetheless, models derived solely from a single imputation method often exhibit diminished performance under varying weather conditions. Consequently, this study introduces a weighted average ensemble model that combines multiple imputation-based models. This innovative approach adjusts the weights according to “sky status” and evaluates the performance of single-imputation models using criteria such as sky status, root mean square error (RMSE), and mean absolute error (MAE), integrating them into a comprehensive weighted ensemble model. This model demonstrates improved RMSE values, ranging from 74.805 to 74.973, which corresponds to performance enhancements of 3.293–3.799% for KNN and 3.190–4.782% for MICE, thereby affirming its effectiveness in scenarios characterized by missing data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Grmay Yordanos Brhane; Eunsung Oh; Sung-Yong Son;doi: 10.3390/en17133292
This study presents a virtual energy storage system (VESS) scheduling method that strategically integrates fixed and dynamic energy storage (ES) solutions to optimize energy management in commercial buildings. Fixed ES, such as batteries, provides stable flexibility but is expensive and can be inefficiently operated. In contrast, dynamic ES can be utilized as needed but requires validation of their flexibility. By combining fixed ES with dynamic ES utilizing vehicle-to-grid (V2G) capabilities, this approach enhances grid stability and manages energy costs more effectively. Empirical validation using real-world data from Korea demonstrates significant improvements in total net benefits by reducing energy costs, which are crucial for the economic sustainability of commercial energy use. Additionally, the analysis of Pearson’s linear correlation coefficient with demand identifies where benefits occur in the scheduling process. The integrated system reduces the need for costly upgrades to the utility grid, suggesting a strategic advantage for large-scale adoption. This study establishes a framework for the broader implementation of such integrated systems, highlighting the potential for substantial improvements in energy efficiency, reduced carbon emissions, and enhanced grid reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Anujin Bayasgalan; Yoo Shin Park; Seak Bai Koh; Sung-Yong Son;doi: 10.3390/en17194794
Energy management models for buildings have been designed primarily to reduce energy costs and improve efficiency. However, the focus has recently shifted to GEBs with a view toward balancing energy supply and demand while enhancing system flexibility and responsiveness. This paper provides a comprehensive comparative analysis of GEBs and other building energy management models, categorizing their features into internal and external dimensions. This review highlights the evolution of building models, including intelligent buildings, smart buildings, green buildings, and zero-energy buildings, and introduces eight distinct features of GEBs related to their efficient, connected, smart, and flexible aspects. The analysis is based on an extensive literature review and a detailed comparison of building models across the aforementioned features. GEBs prioritize interaction with the power grid, which distinguishes them from traditional models focusing on internal efficiency and occupant comfort. This paper also discusses the technological components and research trends associated with GEBs, providing insights into their development and potential evolution in the context of sustainable and efficient building design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dae-Hyun Park; Jong-Bae Park; Kwang Y. Lee; Sung-Yong Son; Jae Hyung Roh;The depletion of existing resources and environmental problems led to an increase in distributed energy resources (DERs) and the accordingly emergence of the prosumer. This change has created an issue of power system operations and the coordinating entities of distribution networks. Besides, environmental concerns and the global policy of supporting renewable energy resources has given some electricity consumers a better perception and a willingness to pay (WTP) for green energy at a higher cost. This article presents a bidding-based peer-to-peer (P2P) energy transaction optimization model that considers these green energy preferences based on prosumer and consumer’s intention. The objective of the model, which deals with energy transactions between prosumers and consumers within the virtual energy community, is to minimize community operating costs taking into account the depreciation costs of energy storage units while maximizing the social welfare for encouraging the energy trading among consumers and prosumers. The weighted social-welfare terms in the objective function provides diverse community operations reflecting the goal of the energy trading operator (community operator). Case studies were conducted according to the presence and absence of energy transactions and energy storages and the green energy preference. Results of the case study showed that the benefits of prosumers and community have occurred in energy transactions and CO2 emission is reduced according to green energy preference.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3061767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3061767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Mi-Lim Kim; Keon-Jun Park; Sung-Yong Son;The energy consumed in buildings constitutes more than half of the total electricity consumption and is highly correlated with the number of occupants; therefore, it is necessary to use occupancy information in energy consumption analysis. However, the number of occupants may not be accurate owing to measurement errors caused by various factors, such as the locations of sensors or cameras and the communication environment. In this study, occupancy was measured using an object recognition camera, the number of people was additionally collected by manual aggregation, measurement error in occupancy count was analyzed, and the true count was estimated using a deep learning model. The energy consumption based on occupancy was predicted using the measured and estimated values. To this end, deep learning was used to predict energy consumption after analyzing the correlation between occupancy and energy consumption. Results showed that the performance of occupancy estimation was 1.9 based on RMSE, which is a 71.1% improvement compared to the original occupancy sensing. The RMSE of predicted energy consumption based on the estimated occupancy was 56.0, which is a 5.2% improvement compared to the original energy estimation.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Eunsung Oh; Sung-Yong Son;doi: 10.3390/app12052750
The concept of a virtual energy storage system (VESS) is based on the sharing of a large energy storage system by multiple units; however, the capacity allocation for each unit limits the operation performance of the VESS. This study proposes an operation strategy of a dynamic VESS for smart energy communities. The proposed VESS operation strategy considers the usage-limited constraint rather than the capacity allocation constraint and it guarantees the usage of VESS resources of each participant for an operation period. Therefore, the degrees of freedom for VESS operation can be increased at each operation time. The dynamic VESS operation problem is formulated as a mixed-integer linear problem that could be solved optimally by applying gradient methods and dual decomposition. The dataset of a VESS in Korea is used for simulation. The simulation results demonstrate that, when the proposed operation strategy is used, the cost efficiency achieved is more than twice that achieved when the existing VESS operation strategy is used. Furthermore, the proposed strategy accurately reflects the characteristics of the participants; thus, more units can participate in the VESS operation service. The proposed VESS operation can improve the system performance of the utility grid and increase the net benefit of the participants.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/5/2750/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12052750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/5/2750/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12052750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jeong-Un Yu; Kyu-Sang Cho; Sung-Won Park; Sung-Yong Son;doi: 10.3390/en17246249
Research on digital twins (DTs) in the power system field has mainly focused on implementing DTs for specific resources, while few studies on electric vehicle (EV)-based DT implementation have considered integration and interoperability between systems. This study introduces a DT-based EV system operation framework to address the aforementioned research gap. The framework implements individual EVs, charging stations, and charging station operators (CPOs) as DTs, enabling integrated operation with the power grid. The DT-based EV agent supports independent decision-making on power service participation by considering location information, distance, charging amount, spare time, and incentives. In addition, the CPO can establish an optimal incentive strategy to induce EV users to participate in grid power services. The proposed DT systems map information between EVs, charging stations, and the grid, enabling analysis and verification of the impact of participants on charging station operation, grid stability, and economic efficiency in an independent environment. The effectiveness and usability of the proposed framework were verified through a case study on an incentive-based demand response program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Hye-Seung Han; Eunsung Oh; Sung-Yong Son;doi: 10.3390/en11071651
Electric vehicles (EVs), one of the biggest innovations in the automobile industry, are considered as a demand source as well as a supply source for power grids. Studies have been conducted on the effect of EV charging and utilization of EVs to control grid peak or to solve the intermittency problem of renewable generators. However, most of these studies focus on only one aspect of EVs. In this work, we demonstrate that the increased demand resulting from EV charging can be alleviated by utilizing idle EV charging stations as a vehicle-to-grid (V2G) service. The work is performed based on data from Jeju Island, Korea. The EV demand pattern in 2030 is modeled and forecasted using EV charging patterns from historical data and the EV and charging station deployment plan of Jeju Island’s local government. Then, using a Monte Carlo simulation, charging and V2G scenarios are generated, and the effect of V2G on peak time is analyzed. In addition, a sensitivity analysis is performed for EV and charging station deployment. The results show that the EV charging demand increase can be resolved within the EV ecosystem.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1651/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/7/1651/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Eunsung Oh; Sung-Yong Son;doi: 10.3390/en15041259
Digital technologies, especially information and communication technologies, paved the way for social welfare by providing efficient and effective means for services. In the energy sector, advanced metering infrastructures (AMIs) are essential for providing various services through information measurement. In this article, we focus on the deployment of an AMI in multi-dwelling units where automated meter reading (AMR) infrastructures are installed. In particular, we explore whether the AMR should substitute the AMI with few alterations, while ensuring desirable accuracy. To determine the adequacy of technology, information measurement performance, service performance, and implementation cost are used as the indicators. Through a case study using real data recorded in Korea, we quantitatively estimate that AMR-based information measurement can exhibit adequate performance and performance degradation of less than 1% in a service environment utilizing AMI with a low-cost investment. We also discuss several technologies and implementation issues in the upcycling of AMR for more reliable service. This study provides a guide for when configuring an information measurement system for a new energy service.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Eunsung Oh; Sung-Yong Son;This study presents peer-to-peer (P2P) energy transaction mechanisms to maximize social welfare considering the uncertainty and profit fairness of the players. The P2P energy transaction problem is formulated as a P2P energy transaction pair matching and the determination of the P2P transaction price. To solve the problem, the optimal condition to maximize social welfare is determined using stochastic P2P energy transaction performance analysis based on the uncertainty characteristics. The analysis results show that social welfare is maximized to match the producer and consumer pairs that have similar demand characteristics; the P2P transaction price balances the profit fairness between the pair. Using these results, two centralized P2P energy transaction mechanisms are proposed by modifying the optimization problem. Moreover, a decentralized P2P energy transaction mechanism that operates in a distributed manner is suggested with the operational signal flow for the implementation of the mechanism. The simulation results show that the centralized and decentralized mechanisms have near optimal performance, with less than a 0.5% and 1% optimal gap compared to the optimal solution that requires perfect information including uncertainty, respectively. However, the decentralized mechanism is less computationally complex and uses less information than the centralized mechanisms; consequently, it can alleviate the operational burden and security and privacy problems. In addition, the results show that the performance of P2P energy transaction is related to the relative demand ratio between the producer and consumer. The optimal condition and results suggest a guide to the design of the P2P energy transaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3041838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3041838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Dae-Sung Lee; Sung-Yong Son;doi: 10.3390/su16104069
Photovoltaic (PV) power is subject to variability, influenced by factors such as meteorological conditions. This variability introduces uncertainties in forecasting, underscoring the necessity for enhanced forecasting models to support the large-scale integration of PV systems. Moreover, the presence of missing data during the model development process significantly impairs model performance. To address this, it is essential to impute missing data from the collected datasets before advancing with model development. Recent advances in imputation methods, including Multivariate Imputation by Chained Equations (MICEs), K-Nearest Neighbors (KNNs), and Generative Adversarial Imputation Networks (GAINs), have exhibited commendable efficacy. Nonetheless, models derived solely from a single imputation method often exhibit diminished performance under varying weather conditions. Consequently, this study introduces a weighted average ensemble model that combines multiple imputation-based models. This innovative approach adjusts the weights according to “sky status” and evaluates the performance of single-imputation models using criteria such as sky status, root mean square error (RMSE), and mean absolute error (MAE), integrating them into a comprehensive weighted ensemble model. This model demonstrates improved RMSE values, ranging from 74.805 to 74.973, which corresponds to performance enhancements of 3.293–3.799% for KNN and 3.190–4.782% for MICE, thereby affirming its effectiveness in scenarios characterized by missing data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16104069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Grmay Yordanos Brhane; Eunsung Oh; Sung-Yong Son;doi: 10.3390/en17133292
This study presents a virtual energy storage system (VESS) scheduling method that strategically integrates fixed and dynamic energy storage (ES) solutions to optimize energy management in commercial buildings. Fixed ES, such as batteries, provides stable flexibility but is expensive and can be inefficiently operated. In contrast, dynamic ES can be utilized as needed but requires validation of their flexibility. By combining fixed ES with dynamic ES utilizing vehicle-to-grid (V2G) capabilities, this approach enhances grid stability and manages energy costs more effectively. Empirical validation using real-world data from Korea demonstrates significant improvements in total net benefits by reducing energy costs, which are crucial for the economic sustainability of commercial energy use. Additionally, the analysis of Pearson’s linear correlation coefficient with demand identifies where benefits occur in the scheduling process. The integrated system reduces the need for costly upgrades to the utility grid, suggesting a strategic advantage for large-scale adoption. This study establishes a framework for the broader implementation of such integrated systems, highlighting the potential for substantial improvements in energy efficiency, reduced carbon emissions, and enhanced grid reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Anujin Bayasgalan; Yoo Shin Park; Seak Bai Koh; Sung-Yong Son;doi: 10.3390/en17194794
Energy management models for buildings have been designed primarily to reduce energy costs and improve efficiency. However, the focus has recently shifted to GEBs with a view toward balancing energy supply and demand while enhancing system flexibility and responsiveness. This paper provides a comprehensive comparative analysis of GEBs and other building energy management models, categorizing their features into internal and external dimensions. This review highlights the evolution of building models, including intelligent buildings, smart buildings, green buildings, and zero-energy buildings, and introduces eight distinct features of GEBs related to their efficient, connected, smart, and flexible aspects. The analysis is based on an extensive literature review and a detailed comparison of building models across the aforementioned features. GEBs prioritize interaction with the power grid, which distinguishes them from traditional models focusing on internal efficiency and occupant comfort. This paper also discusses the technological components and research trends associated with GEBs, providing insights into their development and potential evolution in the context of sustainable and efficient building design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dae-Hyun Park; Jong-Bae Park; Kwang Y. Lee; Sung-Yong Son; Jae Hyung Roh;The depletion of existing resources and environmental problems led to an increase in distributed energy resources (DERs) and the accordingly emergence of the prosumer. This change has created an issue of power system operations and the coordinating entities of distribution networks. Besides, environmental concerns and the global policy of supporting renewable energy resources has given some electricity consumers a better perception and a willingness to pay (WTP) for green energy at a higher cost. This article presents a bidding-based peer-to-peer (P2P) energy transaction optimization model that considers these green energy preferences based on prosumer and consumer’s intention. The objective of the model, which deals with energy transactions between prosumers and consumers within the virtual energy community, is to minimize community operating costs taking into account the depreciation costs of energy storage units while maximizing the social welfare for encouraging the energy trading among consumers and prosumers. The weighted social-welfare terms in the objective function provides diverse community operations reflecting the goal of the energy trading operator (community operator). Case studies were conducted according to the presence and absence of energy transactions and energy storages and the green energy preference. Results of the case study showed that the benefits of prosumers and community have occurred in energy transactions and CO2 emission is reduced according to green energy preference.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3061767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3061767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu