
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Peer-to-Peer Energy Transaction Mechanisms Considering Fairness in Smart Energy Communities

This study presents peer-to-peer (P2P) energy transaction mechanisms to maximize social welfare considering the uncertainty and profit fairness of the players. The P2P energy transaction problem is formulated as a P2P energy transaction pair matching and the determination of the P2P transaction price. To solve the problem, the optimal condition to maximize social welfare is determined using stochastic P2P energy transaction performance analysis based on the uncertainty characteristics. The analysis results show that social welfare is maximized to match the producer and consumer pairs that have similar demand characteristics; the P2P transaction price balances the profit fairness between the pair. Using these results, two centralized P2P energy transaction mechanisms are proposed by modifying the optimization problem. Moreover, a decentralized P2P energy transaction mechanism that operates in a distributed manner is suggested with the operational signal flow for the implementation of the mechanism. The simulation results show that the centralized and decentralized mechanisms have near optimal performance, with less than a 0.5% and 1% optimal gap compared to the optimal solution that requires perfect information including uncertainty, respectively. However, the decentralized mechanism is less computationally complex and uses less information than the centralized mechanisms; consequently, it can alleviate the operational burden and security and privacy problems. In addition, the results show that the performance of P2P energy transaction is related to the relative demand ratio between the producer and consumer. The optimal condition and results suggest a guide to the design of the P2P energy transaction.
- Hanseo University Korea (Republic of)
- Hanseo University Korea (Republic of)
- Gachon University Korea (Republic of)
- Gachon University Korea (Republic of)
Demand-side management, distributed generation, fairness, energy trading, TK1-9971, energy community, distributed energy transaction, Electrical engineering. Electronics. Nuclear engineering
Demand-side management, distributed generation, fairness, energy trading, TK1-9971, energy community, distributed energy transaction, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
