- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:American Chemical Society (ACS) Funded by:EC | 4REFINERYEC| 4REFINERYKamaldeep Sharma; Thomas Helmer Pedersen; Saqib Sohail Toor; Yves Schuurman; Lasse Aistrup Rosendahl;Large-scale commercialization of drop-in biofuel technologies requires a deeper understanding of the molecular structure of biocrude oils and their compatibility with fossil crudes in terms of molecular interactions that govern miscibility. For the first time, the compatibility of hydrothermal liquefaction (HTL) derived biocrude obtained from pinewood with straight-run gas oil (SRGO) was comprehensively investigated by theoretical prediction using Hansen double sphere plots and experimental confirmation from miscibility studies to achieve a biofeed compatible for coprocessing at refineries. The Hansen solubility parameters (HSPs) for biocrude, biocrude components (residue and light and heavy distillate fractions), and SRGO were determined by plotting a three-dimensional Hansen solubility sphere plot based on the experimental solubility data obtained on their solubility studies in 38 different solvents. The compatibility of HTL biocrude oil with SRGO was verified from the solubility distance (Ra) and relative energy difference (RED) values obtained from the center of their Hansen spheres and difference in HSPs, respectively, in a Hansen double sphere solubility plot. The experimental data obtained on miscibility studies confirmed that pyridine, cyclohexanone, and a pyridine-cyclohexanone solvent mixture (1:1) occupy a well-defined Hansen space and show fitting to HSPs of the biocrude-SRGO blend, improve the overall compatibility of the blending mixture, and display a maximum miscibility of 72%. To correlate the compatibility with the molecular structure, the compatibility of light, heavy, and residual fractions obtained by fractional distillation of HTL biocrude (pinewood) was also evaluated with SRGO using the Hansen double sphere plot, and a close agreement with differential scanning calorimetry (DSC) results as well as the experimental data on miscibility studies was verified. Furthermore, the comprehensive estimation of the detailed composition and chemical nature of biocrude and light, heavy, and residual fractions by the means of elemental (CHN/O), GC-MS, and GC × GC analysis was also presented. Additionally, the correlation between compatibility and interactions within chemical functionalities of blend components was established by analyzing the contribution of aromatic, aliphatic, and oxygen containing functional groups to the miscibility using quantitative 13C NMR spectroscopy. The present study reports a mixing strategy to assess the compatibility of biocrudes, heavy distillate fractions, asphaltenes, residues, and polymers with existing petroleum infrastructure for the cost-effective biorefinery process to balance economic and environmental considerations.
Hyper Article en Lig... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NextGenRoadFuelsEC| NextGenRoadFuelsKomeil Kohansal; Kamaldeep Sharma; Muhammad Salman Haider; Saqib Sohail Toor; Daniele Castello; Lasse Aistrup Rosendahl; Joscha Zimmermann; Thomas Helmer Pedersen;doi: 10.1039/d2se00399f
Aqueous phase recirculation increased the bio-crude yield and energy recovery along with promoting the production of N-heterocyclic compounds that lead to harsher required hydrotreating conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se00399f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 48download downloads 48 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se00399f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:MDPI AG Ayaz Ali Shah; Kamaldeep Sharma; Muhammad Salman Haider; Saqib Sohail Toor; Lasse Aistrup Rosendahl; Thomas Helmer Pedersen; Daniele Castello;doi: 10.3390/pr10020207
Hydrothermal liquefaction (HTL) of biomass is establishing itself as one of the leading technologies for the conversion of virtually any type of biomass feedstock into drop-in biofuels and renewable materials. Several catalysis strategies have been proposed for this process to increase the yields of the product (biocrude) and/or to obtain a product with better properties in light of the final use. A number of different studies are available in the literature nowadays, where different catalysts are utilized within HTL including both homogeneous and heterogeneous approaches. Additionally, catalysis plays a major role in the upgrading of HTL biocrude into final products, in which field significant developments have been observed in recent times. This review has the ambition to summarize the different available information to draw an updated overall picture of catalysis applied to HTL. The different catalysis strategies are reviewed, highlighting the specific effect of each kind of catalyst on the yields and properties of the HTL products, by comparing them with the non-catalyzed case. This allows for drawing quantitative conclusions on the actual effectiveness of each catalyst, in relation to the different biomass processed. Additionally, the pros and cons of each different catalysis approach are discussed critically, identifying new challenges and future directions of research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, Norway, NorwayPublisher:MDPI AG Funded by:RCN | Norwegian Centre for Sust...RCN| Norwegian Centre for Sustainable Bio-based Fuels and Energy (Bio4Fuels)Ayaz Ali Shah; Kamaldeep Sharma; Tahir Hussain Seehar; Saqib Sohail Toor; Judit Sandquist; Inge Saanum; Thomas Helmer Pedersen;doi: 10.3390/fuels5010005
handle: 11250/3121819
Hydrothermal liquefaction (HTL) is an emerging technology for bio-crude production but faces challenges in determining the optimal temperature for feedstocks depending on the process mode. In this study, three feedstocks—wood, microalgae spirulina (Algae Sp.), and hydrolysis lignin were tested for sub-supercritical HTL at 350 and 400 °C through six batch-scale experiments. An alkali catalyst (K2CO3) was used with wood and hydrolysis lignin, while e (Algae Sp.) was liquefied without catalyst. Further, two experiments were conducted on wood in a Continuous Stirred Tank Reactor (CSTR) at 350 and 400 °C which provided a batch versus continuous comparison. Results showed Algae Sp. had higher bio-crude yields, followed by wood and lignin. The subcritical temperature of 350 °C yielded more biocrude from all feedstocks than the supercritical range. At 400 °C, a significant change occurred in lignin, with the maximum percentage of solids. Additionally, the supercritical state gave higher values for Higher Heating Values (HHVs) and a greater amount of volatile matter in bio-crude. Gas Chromatography and Mass Spectrometry (GCMS) analysis revealed that phenols dominated the composition of bio-crude derived from wood and hydrolysis lignin, whereas Algae Sp. bio-crude exhibited higher percentages of N-heterocycles and amides. The aqueous phase analysis showed a Total Organic Carbon (TOC) range from 7 to 22 g/L, with Algae Sp. displaying a higher Total Nitrogen (TN) content, ranging from 11 to 13 g/L. The pH levels of all samples were consistently within the alkaline range, except for Wood Cont. 350. In a broader perspective, the subcritical temperature range proved to be advantageous for enhancing bio-crude yield, while the supercritical state improved the quality of the bio-crude.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fuels5010005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fuels5010005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Denmark, GermanyPublisher:MDPI AG Funded by:EC | NextGenRoadFuelsEC| NextGenRoadFuelsKomeil Kohansal; Kamaldeep Sharma; Saqib Sohail Toor; Eliana Lozano Sanchez; Joscha Zimmermann; Lasse Aistrup Rosendahl; Thomas Helmer Pedersen;This study focuses on the valorization of the organic fraction of municipal solid waste (biopulp) by hydrothermal liquefaction. Thereby, homogeneous alkali catalysts (KOH, NaOH, K2CO3, and Na2CO3) and a residual aqueous phase recirculation methodology were mutually employed to enhance the bio-crude yield and energy efficiency of a sub-critical hydrothermal conversion (350 °C, 15–20 Mpa, 15 min). Interestingly, single recirculation of the concentrated aqueous phase positively increased the bio-crude yield in all cases, while the higher heating value (HHV) of the bio-crudes slightly dropped. Compared to the non-catalytic experiment, K2CO3 and Na2CO3 effectively increased the bio-crude yield by 14 and 7.3%, respectively. However, KOH and NaOH showed a negative variation in the bio-crude yield. The highest bio-crude yield (37.5 wt.%) and energy recovery (ER) (59.4%) were achieved when K2CO3 and concentrated aqueous phase recirculation were simultaneously applied to the process. The inorganics distribution results obtained by ICP reveal the tendency of the alkali elements to settle into the aqueous phase, which, if recovered, can potentially boost the circularity of the HTL process. Therefore, wise selection of the alkali catalyst along with aqueous phase recirculation assists hydrothermal liquefaction in green biofuel production and environmentally friendly valorization of biopulp.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4492/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4492/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Royal Society of Chemistry (RSC) Swanand Bhatwadekar; Federica Conti; Kamaldeep Sharma; Eliana Maria Lozano; Saqib Sohail Toor; Thomas Helmer Pedersen;doi: 10.1039/d1se01717a
Sewage sludge from wastewater treatment plants (WWTPs) represents a source of feedstock for hydrothermal liquefaction (HTL), which in turn offers a sustainable alternative to valorize this societal waste.
Aalborg University R... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se01717a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se01717a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Royal Society of Chemistry (RSC) Authors: Gurpreet Singh; Kamaldeep Sharma; Vandana Bhalla; Manoj Kumar;The in situ generated supramolecular ensemble (2:Cu2O) of Cu2O NPs and aggregates of PBI derivative 2 exhibited excellent photocatalytic efficiency in the Suzuki–Miyaura and Suzuki type cross-coupling reactions under mild and eco-friendly conditions.
ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5gc03012a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5gc03012a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 DenmarkPublisher:MDPI AG Toor, Saqib; Shah, Ayaz Ali; Sharma, Kamaldeep; Seehar, Tahir Hussain; Pedersen, Thomas Helmer; Rosendahl, Lasse;doi: 10.3390/en15010364
In the present study, the protein-extracted grass residue (press cake) was processed through hydrothermal liquefaction under sub and supercritical temperatures (300, 350 and 400 °C) with and without using a potassium carbonate catalyst. The results revealed that bio-crude yield was influenced by both temperature and the catalyst. The catalyst was found to be effective at 350 °C (350 Cat) for enhancing the bio-crude yield, whereas supercritical state in both catalytic and non-catalytic conditions improved the quality of bio-crude with reasonable HHVs (33 to 36 MJ/kg). The thermal behaviour of bio-crude was analysed and higher volatile contents (more than 50% under the range of 350 °C) were found at supercritical conditions. The overall TOC values in the residual aqueous phase varied from 22 to 38 g/L. Higher carbon loss was noticed in the aqueous phase in supercritical conditions. Furthermore, GCMS analysis showed ketones, acids and ester, aromatics and hydrocarbon with negligible nitrogen-containing compounds in bio-crude. In conclusion, the catalytic conversion of grass residue under subcritical conditions (350 Cat) is favourable in terms of high bio-crude yield, however, supercritical conditions promote the deoxygenation of oxygen-containing compounds in biomass and thus improve HHVs of bio-crude.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/1/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/1/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Funded by:EC | 4REFINERYEC| 4REFINERYKamaldeep Sharma; Ayaz A. Shah; Saqib S. Toor; Tahir H. Seehar; Thomas H. Pedersen; Lasse A. Rosendahl;doi: 10.3390/en14061708
Hydrothermal liquefaction (HTL) is an effective technology for bio-crude production. To date, various co-liquefaction studies were performed with contrasted (different composition) biomasses in subcritical water. Therefore, the present study investigated co-hydrothermal liquefaction of similar kinds of lignocellulosic biomasses (wheat straw, eucalyptus, and pinewood) in supercritical water under equal ratios at 400 °C with catalytic medium (K2CO3). The lower bio-crude and higher solid yields were obtained in co-liquefaction experiments, as compared to liquefaction of individual feedstocks. On the other hand, higher carbon recovery and higher HHVs were noticed in co-liquefaction-derived bio-crudes. Gas chromatography with mass spectrometry (GC-MS) results showed that organic compounds were detected in all bio-crudes in the order of phenol derivatives > ketones/aldehydes > aromatics > carboxylic acids/esters. The aqueous phase from all samples contained higher TOC in the range of 19 to 33 g/L, with alkaline pH. In short, the co-liquefaction slightly improved the bio-crude quality with a significant reduction in bio-crude energy recovery. This reflects that co-liquefaction of lignocellulosic feedstock is not favorable for enhancing bio-crude yield and improving the overall process economics of HTL.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021 DenmarkPublisher:Springer International Publishing Authors: Sharma, Kamaldeep; Toor, Saqib; Shah, Ayaz Ali; Rosendahl, Lasse;Among different carbon sources, biomass is the most abundant organic carbon source available for producing renewable bio-oils and the value-added chemicals. Hydrothermal liquefaction (HTL) is a green method for sustainable transformation of dry and wet waste biomass to bio-oils and chemical products that are potentially applicable as raw materials in chemical industries. Both sub- and supercritical water possess interesting physicochemical properties, capable of dissolving a variety of waste materials for chemical synthesis and production of valuable liquid, gaseous and solid products. Under supercritical conditions, reactions like supercritical water gasification and supercritical water oxidation produce hydrolyzed and depolymerized products useful as synthetic intermediates in chemical industries. This chapter describes how hydrothermal conversion of waste biomass of different types containing both sugar and non-sugar derivatives leads to renewable biofuels and commodity chemicals by abiding green chemistry principles. Further, valorization of aqueous phase, obtained during hydrothermal processing, has also been discussed, including the chemical composition, reuse and applications for the chemical-enhanced recoveries. Therefore, the hydrothermal conversion of non-renewable waste biomass including agricultural waste, forest residue and organic (food) waste into valuable chemicals products can generate the wide opportunities for the development of sustainable chemical industries.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAalborg University Research PortalPart of book or chapter of book . 2021Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-61837-7_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAalborg University Research PortalPart of book or chapter of book . 2021Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-61837-7_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:American Chemical Society (ACS) Funded by:EC | 4REFINERYEC| 4REFINERYKamaldeep Sharma; Thomas Helmer Pedersen; Saqib Sohail Toor; Yves Schuurman; Lasse Aistrup Rosendahl;Large-scale commercialization of drop-in biofuel technologies requires a deeper understanding of the molecular structure of biocrude oils and their compatibility with fossil crudes in terms of molecular interactions that govern miscibility. For the first time, the compatibility of hydrothermal liquefaction (HTL) derived biocrude obtained from pinewood with straight-run gas oil (SRGO) was comprehensively investigated by theoretical prediction using Hansen double sphere plots and experimental confirmation from miscibility studies to achieve a biofeed compatible for coprocessing at refineries. The Hansen solubility parameters (HSPs) for biocrude, biocrude components (residue and light and heavy distillate fractions), and SRGO were determined by plotting a three-dimensional Hansen solubility sphere plot based on the experimental solubility data obtained on their solubility studies in 38 different solvents. The compatibility of HTL biocrude oil with SRGO was verified from the solubility distance (Ra) and relative energy difference (RED) values obtained from the center of their Hansen spheres and difference in HSPs, respectively, in a Hansen double sphere solubility plot. The experimental data obtained on miscibility studies confirmed that pyridine, cyclohexanone, and a pyridine-cyclohexanone solvent mixture (1:1) occupy a well-defined Hansen space and show fitting to HSPs of the biocrude-SRGO blend, improve the overall compatibility of the blending mixture, and display a maximum miscibility of 72%. To correlate the compatibility with the molecular structure, the compatibility of light, heavy, and residual fractions obtained by fractional distillation of HTL biocrude (pinewood) was also evaluated with SRGO using the Hansen double sphere plot, and a close agreement with differential scanning calorimetry (DSC) results as well as the experimental data on miscibility studies was verified. Furthermore, the comprehensive estimation of the detailed composition and chemical nature of biocrude and light, heavy, and residual fractions by the means of elemental (CHN/O), GC-MS, and GC × GC analysis was also presented. Additionally, the correlation between compatibility and interactions within chemical functionalities of blend components was established by analyzing the contribution of aromatic, aliphatic, and oxygen containing functional groups to the miscibility using quantitative 13C NMR spectroscopy. The present study reports a mixing strategy to assess the compatibility of biocrudes, heavy distillate fractions, asphaltenes, residues, and polymers with existing petroleum infrastructure for the cost-effective biorefinery process to balance economic and environmental considerations.
Hyper Article en Lig... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NextGenRoadFuelsEC| NextGenRoadFuelsKomeil Kohansal; Kamaldeep Sharma; Muhammad Salman Haider; Saqib Sohail Toor; Daniele Castello; Lasse Aistrup Rosendahl; Joscha Zimmermann; Thomas Helmer Pedersen;doi: 10.1039/d2se00399f
Aqueous phase recirculation increased the bio-crude yield and energy recovery along with promoting the production of N-heterocyclic compounds that lead to harsher required hydrotreating conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se00399f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 48download downloads 48 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se00399f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:MDPI AG Ayaz Ali Shah; Kamaldeep Sharma; Muhammad Salman Haider; Saqib Sohail Toor; Lasse Aistrup Rosendahl; Thomas Helmer Pedersen; Daniele Castello;doi: 10.3390/pr10020207
Hydrothermal liquefaction (HTL) of biomass is establishing itself as one of the leading technologies for the conversion of virtually any type of biomass feedstock into drop-in biofuels and renewable materials. Several catalysis strategies have been proposed for this process to increase the yields of the product (biocrude) and/or to obtain a product with better properties in light of the final use. A number of different studies are available in the literature nowadays, where different catalysts are utilized within HTL including both homogeneous and heterogeneous approaches. Additionally, catalysis plays a major role in the upgrading of HTL biocrude into final products, in which field significant developments have been observed in recent times. This review has the ambition to summarize the different available information to draw an updated overall picture of catalysis applied to HTL. The different catalysis strategies are reviewed, highlighting the specific effect of each kind of catalyst on the yields and properties of the HTL products, by comparing them with the non-catalyzed case. This allows for drawing quantitative conclusions on the actual effectiveness of each catalyst, in relation to the different biomass processed. Additionally, the pros and cons of each different catalysis approach are discussed critically, identifying new challenges and future directions of research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, Norway, NorwayPublisher:MDPI AG Funded by:RCN | Norwegian Centre for Sust...RCN| Norwegian Centre for Sustainable Bio-based Fuels and Energy (Bio4Fuels)Ayaz Ali Shah; Kamaldeep Sharma; Tahir Hussain Seehar; Saqib Sohail Toor; Judit Sandquist; Inge Saanum; Thomas Helmer Pedersen;doi: 10.3390/fuels5010005
handle: 11250/3121819
Hydrothermal liquefaction (HTL) is an emerging technology for bio-crude production but faces challenges in determining the optimal temperature for feedstocks depending on the process mode. In this study, three feedstocks—wood, microalgae spirulina (Algae Sp.), and hydrolysis lignin were tested for sub-supercritical HTL at 350 and 400 °C through six batch-scale experiments. An alkali catalyst (K2CO3) was used with wood and hydrolysis lignin, while e (Algae Sp.) was liquefied without catalyst. Further, two experiments were conducted on wood in a Continuous Stirred Tank Reactor (CSTR) at 350 and 400 °C which provided a batch versus continuous comparison. Results showed Algae Sp. had higher bio-crude yields, followed by wood and lignin. The subcritical temperature of 350 °C yielded more biocrude from all feedstocks than the supercritical range. At 400 °C, a significant change occurred in lignin, with the maximum percentage of solids. Additionally, the supercritical state gave higher values for Higher Heating Values (HHVs) and a greater amount of volatile matter in bio-crude. Gas Chromatography and Mass Spectrometry (GCMS) analysis revealed that phenols dominated the composition of bio-crude derived from wood and hydrolysis lignin, whereas Algae Sp. bio-crude exhibited higher percentages of N-heterocycles and amides. The aqueous phase analysis showed a Total Organic Carbon (TOC) range from 7 to 22 g/L, with Algae Sp. displaying a higher Total Nitrogen (TN) content, ranging from 11 to 13 g/L. The pH levels of all samples were consistently within the alkaline range, except for Wood Cont. 350. In a broader perspective, the subcritical temperature range proved to be advantageous for enhancing bio-crude yield, while the supercritical state improved the quality of the bio-crude.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fuels5010005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fuels5010005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Denmark, GermanyPublisher:MDPI AG Funded by:EC | NextGenRoadFuelsEC| NextGenRoadFuelsKomeil Kohansal; Kamaldeep Sharma; Saqib Sohail Toor; Eliana Lozano Sanchez; Joscha Zimmermann; Lasse Aistrup Rosendahl; Thomas Helmer Pedersen;This study focuses on the valorization of the organic fraction of municipal solid waste (biopulp) by hydrothermal liquefaction. Thereby, homogeneous alkali catalysts (KOH, NaOH, K2CO3, and Na2CO3) and a residual aqueous phase recirculation methodology were mutually employed to enhance the bio-crude yield and energy efficiency of a sub-critical hydrothermal conversion (350 °C, 15–20 Mpa, 15 min). Interestingly, single recirculation of the concentrated aqueous phase positively increased the bio-crude yield in all cases, while the higher heating value (HHV) of the bio-crudes slightly dropped. Compared to the non-catalytic experiment, K2CO3 and Na2CO3 effectively increased the bio-crude yield by 14 and 7.3%, respectively. However, KOH and NaOH showed a negative variation in the bio-crude yield. The highest bio-crude yield (37.5 wt.%) and energy recovery (ER) (59.4%) were achieved when K2CO3 and concentrated aqueous phase recirculation were simultaneously applied to the process. The inorganics distribution results obtained by ICP reveal the tendency of the alkali elements to settle into the aqueous phase, which, if recovered, can potentially boost the circularity of the HTL process. Therefore, wise selection of the alkali catalyst along with aqueous phase recirculation assists hydrothermal liquefaction in green biofuel production and environmentally friendly valorization of biopulp.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4492/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4492/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Royal Society of Chemistry (RSC) Swanand Bhatwadekar; Federica Conti; Kamaldeep Sharma; Eliana Maria Lozano; Saqib Sohail Toor; Thomas Helmer Pedersen;doi: 10.1039/d1se01717a
Sewage sludge from wastewater treatment plants (WWTPs) represents a source of feedstock for hydrothermal liquefaction (HTL), which in turn offers a sustainable alternative to valorize this societal waste.
Aalborg University R... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se01717a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se01717a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Royal Society of Chemistry (RSC) Authors: Gurpreet Singh; Kamaldeep Sharma; Vandana Bhalla; Manoj Kumar;The in situ generated supramolecular ensemble (2:Cu2O) of Cu2O NPs and aggregates of PBI derivative 2 exhibited excellent photocatalytic efficiency in the Suzuki–Miyaura and Suzuki type cross-coupling reactions under mild and eco-friendly conditions.
ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5gc03012a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5gc03012a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 DenmarkPublisher:MDPI AG Toor, Saqib; Shah, Ayaz Ali; Sharma, Kamaldeep; Seehar, Tahir Hussain; Pedersen, Thomas Helmer; Rosendahl, Lasse;doi: 10.3390/en15010364
In the present study, the protein-extracted grass residue (press cake) was processed through hydrothermal liquefaction under sub and supercritical temperatures (300, 350 and 400 °C) with and without using a potassium carbonate catalyst. The results revealed that bio-crude yield was influenced by both temperature and the catalyst. The catalyst was found to be effective at 350 °C (350 Cat) for enhancing the bio-crude yield, whereas supercritical state in both catalytic and non-catalytic conditions improved the quality of bio-crude with reasonable HHVs (33 to 36 MJ/kg). The thermal behaviour of bio-crude was analysed and higher volatile contents (more than 50% under the range of 350 °C) were found at supercritical conditions. The overall TOC values in the residual aqueous phase varied from 22 to 38 g/L. Higher carbon loss was noticed in the aqueous phase in supercritical conditions. Furthermore, GCMS analysis showed ketones, acids and ester, aromatics and hydrocarbon with negligible nitrogen-containing compounds in bio-crude. In conclusion, the catalytic conversion of grass residue under subcritical conditions (350 Cat) is favourable in terms of high bio-crude yield, however, supercritical conditions promote the deoxygenation of oxygen-containing compounds in biomass and thus improve HHVs of bio-crude.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/1/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/1/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Funded by:EC | 4REFINERYEC| 4REFINERYKamaldeep Sharma; Ayaz A. Shah; Saqib S. Toor; Tahir H. Seehar; Thomas H. Pedersen; Lasse A. Rosendahl;doi: 10.3390/en14061708
Hydrothermal liquefaction (HTL) is an effective technology for bio-crude production. To date, various co-liquefaction studies were performed with contrasted (different composition) biomasses in subcritical water. Therefore, the present study investigated co-hydrothermal liquefaction of similar kinds of lignocellulosic biomasses (wheat straw, eucalyptus, and pinewood) in supercritical water under equal ratios at 400 °C with catalytic medium (K2CO3). The lower bio-crude and higher solid yields were obtained in co-liquefaction experiments, as compared to liquefaction of individual feedstocks. On the other hand, higher carbon recovery and higher HHVs were noticed in co-liquefaction-derived bio-crudes. Gas chromatography with mass spectrometry (GC-MS) results showed that organic compounds were detected in all bio-crudes in the order of phenol derivatives > ketones/aldehydes > aromatics > carboxylic acids/esters. The aqueous phase from all samples contained higher TOC in the range of 19 to 33 g/L, with alkaline pH. In short, the co-liquefaction slightly improved the bio-crude quality with a significant reduction in bio-crude energy recovery. This reflects that co-liquefaction of lignocellulosic feedstock is not favorable for enhancing bio-crude yield and improving the overall process economics of HTL.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/6/1708/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021 DenmarkPublisher:Springer International Publishing Authors: Sharma, Kamaldeep; Toor, Saqib; Shah, Ayaz Ali; Rosendahl, Lasse;Among different carbon sources, biomass is the most abundant organic carbon source available for producing renewable bio-oils and the value-added chemicals. Hydrothermal liquefaction (HTL) is a green method for sustainable transformation of dry and wet waste biomass to bio-oils and chemical products that are potentially applicable as raw materials in chemical industries. Both sub- and supercritical water possess interesting physicochemical properties, capable of dissolving a variety of waste materials for chemical synthesis and production of valuable liquid, gaseous and solid products. Under supercritical conditions, reactions like supercritical water gasification and supercritical water oxidation produce hydrolyzed and depolymerized products useful as synthetic intermediates in chemical industries. This chapter describes how hydrothermal conversion of waste biomass of different types containing both sugar and non-sugar derivatives leads to renewable biofuels and commodity chemicals by abiding green chemistry principles. Further, valorization of aqueous phase, obtained during hydrothermal processing, has also been discussed, including the chemical composition, reuse and applications for the chemical-enhanced recoveries. Therefore, the hydrothermal conversion of non-renewable waste biomass including agricultural waste, forest residue and organic (food) waste into valuable chemicals products can generate the wide opportunities for the development of sustainable chemical industries.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAalborg University Research PortalPart of book or chapter of book . 2021Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-61837-7_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAalborg University Research PortalPart of book or chapter of book . 2021Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-61837-7_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu