Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Sustainable Chemistry & Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Sustainable Chemistry & Engineering
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2020
Data sources: VBN
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detailed Investigation of Compatibility of Hydrothermal Liquefaction Derived Biocrude Oil with Fossil Fuel for Corefining to Drop-in Biofuels through Structural and Compositional Analysis

Authors: Kamaldeep Sharma; Thomas Helmer Pedersen; Saqib Sohail Toor; Yves Schuurman; Lasse Aistrup Rosendahl;

Detailed Investigation of Compatibility of Hydrothermal Liquefaction Derived Biocrude Oil with Fossil Fuel for Corefining to Drop-in Biofuels through Structural and Compositional Analysis

Abstract

Large-scale commercialization of drop-in biofuel technologies requires a deeper understanding of the molecular structure of biocrude oils and their compatibility with fossil crudes in terms of molecular interactions that govern miscibility. For the first time, the compatibility of hydrothermal liquefaction (HTL) derived biocrude obtained from pinewood with straight-run gas oil (SRGO) was comprehensively investigated by theoretical prediction using Hansen double sphere plots and experimental confirmation from miscibility studies to achieve a biofeed compatible for coprocessing at refineries. The Hansen solubility parameters (HSPs) for biocrude, biocrude components (residue and light and heavy distillate fractions), and SRGO were determined by plotting a three-dimensional Hansen solubility sphere plot based on the experimental solubility data obtained on their solubility studies in 38 different solvents. The compatibility of HTL biocrude oil with SRGO was verified from the solubility distance (Ra) and relative energy difference (RED) values obtained from the center of their Hansen spheres and difference in HSPs, respectively, in a Hansen double sphere solubility plot. The experimental data obtained on miscibility studies confirmed that pyridine, cyclohexanone, and a pyridine-cyclohexanone solvent mixture (1:1) occupy a well-defined Hansen space and show fitting to HSPs of the biocrude-SRGO blend, improve the overall compatibility of the blending mixture, and display a maximum miscibility of 72%. To correlate the compatibility with the molecular structure, the compatibility of light, heavy, and residual fractions obtained by fractional distillation of HTL biocrude (pinewood) was also evaluated with SRGO using the Hansen double sphere plot, and a close agreement with differential scanning calorimetry (DSC) results as well as the experimental data on miscibility studies was verified. Furthermore, the comprehensive estimation of the detailed composition and chemical nature of biocrude and light, heavy, and residual fractions by the means of elemental (CHN/O), GC-MS, and GC × GC analysis was also presented. Additionally, the correlation between compatibility and interactions within chemical functionalities of blend components was established by analyzing the contribution of aromatic, aliphatic, and oxygen containing functional groups to the miscibility using quantitative 13C NMR spectroscopy. The present study reports a mixing strategy to assess the compatibility of biocrudes, heavy distillate fractions, asphaltenes, residues, and polymers with existing petroleum infrastructure for the cost-effective biorefinery process to balance economic and environmental considerations.

Country
Denmark
Keywords

Fossil fuel, Compatibility, Drop-in biofuels, [CHIM.GENI]Chemical Sciences/Chemical engineering, Biocrude, Corefining, Hydrothermal liquefaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green
hybrid