- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Funded by:EC | RealTideEC| RealTideAuthors:Marilou Jourdain de Thieulloy;
Marilou Jourdain de Thieulloy
Marilou Jourdain de Thieulloy in OpenAIREMairi Dorward;
Mairi Dorward
Mairi Dorward in OpenAIREChris Old;
Chris Old
Chris Old in OpenAIRERoman Gabl;
+3 AuthorsRoman Gabl
Roman Gabl in OpenAIREMarilou Jourdain de Thieulloy;
Marilou Jourdain de Thieulloy
Marilou Jourdain de Thieulloy in OpenAIREMairi Dorward;
Mairi Dorward
Mairi Dorward in OpenAIREChris Old;
Chris Old
Chris Old in OpenAIRERoman Gabl;
Roman Gabl
Roman Gabl in OpenAIREThomas Davey;
Thomas Davey
Thomas Davey in OpenAIREDavid M. Ingram;
David M. Ingram
David M. Ingram in OpenAIREBrian G. Sellar;
Brian G. Sellar
Brian G. Sellar in OpenAIREdoi: 10.3390/data5030061
Acoustic Doppler Profilers (ADPs) are routinely used to measure flow velocity in the ocean, enabling multi-points measurement along a profile while Acoustic Doppler Velocimeters (ADVs) are laboratory instruments that provide very precise point velocity measurement. The experimental set-up allows laboratory comparison of measurement from these two instruments. Simultaneous multi-point measurements of velocity along the horizontal tank profile from Single-Beam Acoustic Doppler Profiler (SB-ADP) were compared against multiple co-located point measurements from an ADV. Measurements were performed in the FloWave Ocean Energy Research Facility at the University of Edinburgh at flow velocities between 0.6 ms − 1 and 1.2 ms − 1 . This paper describes the data; the analysis of the inter-instrument comparison is presented in an associated Sensors paper by the same authors. This data-set contains (a) time series of raw SB-ADP uni-directional velocity measurements along a 10 m tank profile binned into 54 measurements cells and (b) ADV point measurements of three-directional velocity time series recorded in beam coordinates at selected locations along the profile. Associated with the data are instrument generated quality data, metadata and user-derived quality flags. An analysis of the quality of SB-ADP data along the profile is presented. This data-set provides multiple contemporaneous velocity measurements along the tank profile, relevant for correlation statistics, length-scale calculations and validation of numerical models simulating flow hydrodynamics in circular test facilities.
Data arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/5/3/61/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data5030061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert Data arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/5/3/61/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data5030061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, Italy, Italy, FrancePublisher:MDPI AG Funded by:EC | MARINET2EC| MARINET2Authors:Benoît Gaurier;
Benoît Gaurier
Benoît Gaurier in OpenAIREStephanie Ordonez-Sanchez;
Jean-Valéry Facq;Stephanie Ordonez-Sanchez
Stephanie Ordonez-Sanchez in OpenAIREGrégory Germain;
+7 AuthorsGrégory Germain
Grégory Germain in OpenAIREBenoît Gaurier;
Benoît Gaurier
Benoît Gaurier in OpenAIREStephanie Ordonez-Sanchez;
Jean-Valéry Facq;Stephanie Ordonez-Sanchez
Stephanie Ordonez-Sanchez in OpenAIREGrégory Germain;
Cameron Johnstone;Grégory Germain
Grégory Germain in OpenAIRERodrigo Martinez;
Rodrigo Martinez
Rodrigo Martinez in OpenAIREFrancesco Salvatore;
Francesco Salvatore
Francesco Salvatore in OpenAIREIvan Santic;
Ivan Santic
Ivan Santic in OpenAIREThomas Davey;
Thomas Davey
Thomas Davey in OpenAIREChris Old;
Chris Old
Chris Old in OpenAIREBrian Sellar;
Brian Sellar
Brian Sellar in OpenAIREThis Round Robin Test program aims to establish the influence of the combined wave and current effect on the power capture and performance of a generic tidal turbine prototype. Three facilities offering similar range of experimental conditions have been selected on the basis that their dimensions along with the rotor diameter of the turbine translate into low blockage ratio conditions. The performance of the turbine shows differences between the facilities up to 25% in terms of average power coefficient, depending on the wave and current cases. To prevent the flow velocity increasing these differences, the turbine performance coefficients have been systematically normalized using a time-average disc-integrated velocity, accounting for vertical gradients over the turbine swept area. Differences linked to blockage effects and turbulence characteristics between facilities are both responsible for 5 to 10% of the power coefficient gaps. The intrinsic differences between the tanks play a significant role as well. A first attempt is given to show how the wave-current interaction effects can be responsible for differences in the turbine performance. In these tanks, the simultaneous generation of wave and current is a key part often producing disruptions in both of these flow characteristics.
CORE arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/6/463/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8060463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/6/463/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8060463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Funded by:EC | RealTideEC| RealTideAuthors:Marilou Jourdain de Thieulloy;
Mairi Dorward;Marilou Jourdain de Thieulloy
Marilou Jourdain de Thieulloy in OpenAIREChris Old;
Chris Old
Chris Old in OpenAIRERoman Gabl;
+3 AuthorsRoman Gabl
Roman Gabl in OpenAIREMarilou Jourdain de Thieulloy;
Mairi Dorward;Marilou Jourdain de Thieulloy
Marilou Jourdain de Thieulloy in OpenAIREChris Old;
Chris Old
Chris Old in OpenAIRERoman Gabl;
Roman Gabl
Roman Gabl in OpenAIREThomas Davey;
Thomas Davey
Thomas Davey in OpenAIREDavid M. Ingram;
David M. Ingram
David M. Ingram in OpenAIREBrian G. Sellar;
Brian G. Sellar
Brian G. Sellar in OpenAIREHarnessing the energy of tidal currents has huge potential as a source of clean renewable energy. To do so in a reliable and cost effective way, it is critical to understand the interaction between tidal turbines, waves, and turbulent currents in the ocean. Scaled testing in a tank test provides a controlled, realistic, and highly reproducible down-scaled open ocean environment, and it is a key step in gaining this understanding. Knowledge of the hydrodynamic conditions during tests is critical and measurements at multiple locations are required to accurately characterise spatially varying flow in test tank facilities. The paper presents a laboratory technique using an acoustic velocimetry instrument, the range over-which measurements are acquired being more akin to open water applications. This enables almost simultaneous multi-point measurements of uni-directional velocity along a horizontal profile. Velocity measurements have been obtained from a horizontally mounted Single Beam Acoustic Doppler (SB-ADP) profiler deployed in the FloWave Ocean Energy Research Facility at the University of Edinburgh. These measurements have been statistically compared with point measurements obtained while using a co-located Acoustic Doppler Velocimeter (ADV). Measurements were made with both instruments under flow velocities varying from 0.6 ms−1 to 1.2 ms−1, showing that flow higher than 1 ms−1 was more suitable. Using a SB-ADP has shown the advantage of gaining 54 simultaneous measurement points of uni-directional velocity, covering a significant area with a total distance of 10 m of the test-tank, at a measurement frequency of 16 Hz. Of those measurement points, 41 were compared with co-located ADV measurements covering 8 m of the profile for a tank nominal flow velocity of 0.8 ms−1, and four distributed locations were chosen to to carry out the study at 0.6 ms−1, 1.0 ms−1, and 1.2 ms−1. The comparison with the ADV measurement showed a 2% relative bias on average.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/14/3881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20143881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/14/3881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20143881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, Italy, FrancePublisher:MDPI AG Funded by:EC | MARINET2EC| MARINET2Authors:Martinez, Rodrigo;
Martinez, Rodrigo
Martinez, Rodrigo in OpenAIREGaurier, Benoit;
Gaurier, Benoit
Gaurier, Benoit in OpenAIREOrdonez-Sanchez, Stephanie;
Facq, Jean-Valery; +7 AuthorsOrdonez-Sanchez, Stephanie
Ordonez-Sanchez, Stephanie in OpenAIREMartinez, Rodrigo;
Martinez, Rodrigo
Martinez, Rodrigo in OpenAIREGaurier, Benoit;
Gaurier, Benoit
Gaurier, Benoit in OpenAIREOrdonez-Sanchez, Stephanie;
Facq, Jean-Valery;Ordonez-Sanchez, Stephanie
Ordonez-Sanchez, Stephanie in OpenAIREGermain, Gregory;
Johnstone, Cameron;Germain, Gregory
Germain, Gregory in OpenAIRESantic, Ivan;
Santic, Ivan
Santic, Ivan in OpenAIRESalvatore, Francesco;
Salvatore, Francesco
Salvatore, Francesco in OpenAIREDavey, Thomas;
Davey, Thomas
Davey, Thomas in OpenAIREOld, Chris;
Old, Chris
Old, Chris in OpenAIRESellar, Brian G.;
Sellar, Brian G.
Sellar, Brian G. in OpenAIREA Round Robin Tests program is being undertaken within the EC MaRINET2 initiative. This programme studies the used facility influence can have on the performance evaluation of a horizontal axis tidal turbine prototype when it is operated under wave and current conditions. In this paper, we present the design of experiments that is used throughout the work programme and the results related to the flow characterisation obtained at the Ifremer wave and current circulating tank, the Cnr-Inm wave towing tank and the ocean research facility FloWave. These facilities have been identified to provide adequate geometric conditions to accommodate a 0.724 m diameter turbine operating at flow velocities of 0.8 and 1.0 m/s. The set-up is replicated in each of the facilities with exemption of the amount of flow measuring instruments. Intrinsic differences in creating wave and currents between facilities are found. Flow velocities are up to 10% higher than the nominal values and wave amplitudes higher than the target values by up to a factor of 2. These discrepancies are related to the flow and wave generation methods used at each facility. When the flow velocity is measured besides the rotor, the velocity presents an increase of 8% compared to the upstream measurements.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://strathprints.strath.ac.uk/76089/1/Martinez_etal_JMSE_2021_Tidal_energy_round_robin_tests.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://strathprints.strath.ac.uk/76089/1/Martinez_etal_JMSE_2021_Tidal_energy_round_robin_tests.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/4/425/pdfData sources: Multidisciplinary Digital Publishing InstituteStrathprintsArticle . 2021License: CC BYFull-Text: https://strathprints.strath.ac.uk/76089/1/Martinez_etal_JMSE_2021_Tidal_energy_round_robin_tests.pdfData sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9040425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://strathprints.strath.ac.uk/76089/1/Martinez_etal_JMSE_2021_Tidal_energy_round_robin_tests.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://strathprints.strath.ac.uk/76089/1/Martinez_etal_JMSE_2021_Tidal_energy_round_robin_tests.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/4/425/pdfData sources: Multidisciplinary Digital Publishing InstituteStrathprintsArticle . 2021License: CC BYFull-Text: https://strathprints.strath.ac.uk/76089/1/Martinez_etal_JMSE_2021_Tidal_energy_round_robin_tests.pdfData sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9040425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu