- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Triesch, Tobias; Klütz, Theresa; Linßen, Jochen; Stolten, Detlef;Sustainable energy, grids and networks 39, 101455 - (2024). doi:10.1016/j.segan.2024.101455 Published by Elsevier, Amsterdam [u.a.]
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Triesch, Tobias; Klütz, Theresa; Linßen, Jochen; Stolten, Detlef;Sustainable energy, grids and networks 39, 101455 - (2024). doi:10.1016/j.segan.2024.101455 Published by Elsevier, Amsterdam [u.a.]
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Ludger Blum; Murat Peksen; Detlef Stolten; Detlef Stolten; Roland Peters; P. Batfalsky; Qingping Fang;Abstract Based on previous long-term SOFC stack tests, two short stacks (one F20 and one F10 design) were tested in order to investigate stack performance under high fuel utilization (>40%) and possibly also high current densities (>0.5 Acm−2). The F20-design stack was still operated with relatively mild current densities (≤0.5 Acm−2), but with high fuel utilization of up to 90% with 10% pre-reformed liquefied natural gas (LNG). The F10-design stack was operated with 20% humidified H2, but with high fuel utilization of up to 90% and high current densities of up to 1.5 Acm−2. Preliminary analysis shows that both F10- and F20-design stacks can be operated smoothly at a fuel utilization of ∼85% in the temperature range of 750∼800 °C, although an increase in concentration polarization can already be observed at the fuel utilization of ∼80%. Operation with fuel utilization of 90% led to local oxidation of cells at a similar position in both stacks. Based on the calculations with a 1D model, such an effect was assumed to be due to the variation in fuel utilization caused by the temperature gradient in the cell.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Ludger Blum; Murat Peksen; Detlef Stolten; Detlef Stolten; Roland Peters; P. Batfalsky; Qingping Fang;Abstract Based on previous long-term SOFC stack tests, two short stacks (one F20 and one F10 design) were tested in order to investigate stack performance under high fuel utilization (>40%) and possibly also high current densities (>0.5 Acm−2). The F20-design stack was still operated with relatively mild current densities (≤0.5 Acm−2), but with high fuel utilization of up to 90% with 10% pre-reformed liquefied natural gas (LNG). The F10-design stack was operated with 20% humidified H2, but with high fuel utilization of up to 90% and high current densities of up to 1.5 Acm−2. Preliminary analysis shows that both F10- and F20-design stacks can be operated smoothly at a fuel utilization of ∼85% in the temperature range of 750∼800 °C, although an increase in concentration polarization can already be observed at the fuel utilization of ∼80%. Operation with fuel utilization of 90% led to local oxidation of cells at a similar position in both stacks. Based on the calculations with a 1D model, such an effect was assumed to be due to the variation in fuel utilization caused by the temperature gradient in the cell.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:Elsevier BV Funded by:EC | SOLPARTEC| SOLPARTMaximilian Ryssel; Gkiokchan Moumin; Martin Robinius; Detlef Stolten; Detlef Stolten; Christian Sattler; Peter Markewitz; Li Zhao;Renewable energy 145, 1578-1596 (2020). doi:10.1016/j.renene.2019.07.045 Published by Elsevier Science, Amsterdam [u.a.]
DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:Elsevier BV Funded by:EC | SOLPARTEC| SOLPARTMaximilian Ryssel; Gkiokchan Moumin; Martin Robinius; Detlef Stolten; Detlef Stolten; Christian Sattler; Peter Markewitz; Li Zhao;Renewable energy 145, 1578-1596 (2020). doi:10.1016/j.renene.2019.07.045 Published by Elsevier Science, Amsterdam [u.a.]
DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:American Geophysical Union (AGU) Authors: Chen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; +6 AuthorsChen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; Poll, Stefan; Houssoukri Zounogo Wahabou, Yoda; Linssen, Jochen; Vereecken, Harry; Stolten, Detlef; Heinrichs, Heidi;AbstractReliable and highly resolved information about onshore wind energy potential (WEP) is essential for expanding renewable energy to eventually achieve carbon neutrality. In this pilot study, simulated 60 m wind speeds (ws60m) from a km‐scale, convection‐permitting 3.3 km‐resolution ICON‐LAM simulation and often‐used 31 km‐resolution ERA5 reanalysis are evaluated at 18 weather masts. The estimated ICON‐LAM and ERA5 WEPs are then compared using an innovative approach with 1.8 million eligible wind turbine placements over southern Africa. Results show ERA5 underestimates ws60m with a Mean Error (ME) of −1.8 m s−1 (−27%). In contrast, ICON‐LAM shows a ME of −0.1 m s−1 (−1.8%), resulting in a much higher average WEP by 48% compared to ERA5. A combined Global Wind Atlas‐ERA5 product reduces the ws60m underestimation of ERA5 to −0.3 m s−1 (−4.7%), but shows a similar average WEP compared to ERA5 resulting from the WEP spatial heterogeneity.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:American Geophysical Union (AGU) Authors: Chen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; +6 AuthorsChen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; Poll, Stefan; Houssoukri Zounogo Wahabou, Yoda; Linssen, Jochen; Vereecken, Harry; Stolten, Detlef; Heinrichs, Heidi;AbstractReliable and highly resolved information about onshore wind energy potential (WEP) is essential for expanding renewable energy to eventually achieve carbon neutrality. In this pilot study, simulated 60 m wind speeds (ws60m) from a km‐scale, convection‐permitting 3.3 km‐resolution ICON‐LAM simulation and often‐used 31 km‐resolution ERA5 reanalysis are evaluated at 18 weather masts. The estimated ICON‐LAM and ERA5 WEPs are then compared using an innovative approach with 1.8 million eligible wind turbine placements over southern Africa. Results show ERA5 underestimates ws60m with a Mean Error (ME) of −1.8 m s−1 (−27%). In contrast, ICON‐LAM shows a ME of −0.1 m s−1 (−1.8%), resulting in a much higher average WEP by 48% compared to ERA5. A combined Global Wind Atlas‐ERA5 product reduces the ws60m underestimation of ERA5 to −0.3 m s−1 (−4.7%), but shows a similar average WEP compared to ERA5 resulting from the WEP spatial heterogeneity.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Thomas Grube; Detlef Stolten; Ahmet Lokurlu; B. Höhlein;Abstract Highly efficient energy conversion systems with fuel cells for vehicles and stationary applications are currently being discussed all over the world as a technology which will be able to reduce primary energy demand and emissions of limited and climate-relevant pollutants. The high flexibility of fuel-cell systems with respect to energy carriers opens up possibilities of modifying the energy market in the long term. New environmental legislation, above all in the USA, stipulating the introduction of emission-free cars from 2003, has led in the transport sector to an intensified search for alternatives to conventional drive concepts. In stationary applications, numerous demonstration plants and some field tests already implemented reflect the developmental stage of fuel-cell systems. In Germany, a new combined heat and power (CHP) plant modernisation law has been enacted. This act is of special significance for the market launch of fuel cells. A major milestone on the road to market success for all the above-mentioned systems—in order to compete with conventional technologies—is the reduction of costs. In this contribution systems analyses for mobile and stationary applications of fuel-cell systems are presented as well as economic analyses for different fuel-cell systems for stationary applications. In particular, CHP generation based on natural gas as the energy carrier is performed.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Thomas Grube; Detlef Stolten; Ahmet Lokurlu; B. Höhlein;Abstract Highly efficient energy conversion systems with fuel cells for vehicles and stationary applications are currently being discussed all over the world as a technology which will be able to reduce primary energy demand and emissions of limited and climate-relevant pollutants. The high flexibility of fuel-cell systems with respect to energy carriers opens up possibilities of modifying the energy market in the long term. New environmental legislation, above all in the USA, stipulating the introduction of emission-free cars from 2003, has led in the transport sector to an intensified search for alternatives to conventional drive concepts. In stationary applications, numerous demonstration plants and some field tests already implemented reflect the developmental stage of fuel-cell systems. In Germany, a new combined heat and power (CHP) plant modernisation law has been enacted. This act is of special significance for the market launch of fuel cells. A major milestone on the road to market success for all the above-mentioned systems—in order to compete with conventional technologies—is the reduction of costs. In this contribution systems analyses for mobile and stationary applications of fuel-cell systems are presented as well as economic analyses for different fuel-cell systems for stationary applications. In particular, CHP generation based on natural gas as the energy carrier is performed.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Werner Lehnert; Werner Lehnert; Holger Janßen; Thea Mildebrath; Achim Edelmann; Patrick Müller; Detlef Stolten; Detlef Stolten;Abstract This paper provides detailed insight into the design, construction, production and verification of a metallic bipolar plate for High Temperature Polymer Electrolyte Fuel Cell stacks. With a focusing on applications with power demands of 5–10 kW, the active cell area is set to a maximum of 100 cm2. The double-plate-concept allows for liquid cooling in the inner bipolar plate compartment. Due to the bipolar plate production by hydroforming of thin stainless steel foils the structure of the coolant compartment is dependent on the gas flow field design. To ensure proper cooling functionality a co-design is necessary. The flow field design, in conjunction with the flow configuration of the reactants (reformate, air) and coolant, considers the effects of hydrogen and oxygen depletion on current density distribution, as well as the temperature profile on carbon monoxide poisoning. These specifications are based on previously published results. For validation, a 5-cell stack with commercial Membrane Electrode Assemblies was operated at 160 °C and 0.2 A/cm2 and regularly interrupted for the polarization curve measurement. After 4700 h of continuous operation, the test was terminated due to a rapid voltage drop in one of the cells. In this paper, it is shown that novel metallic bipolar plates from thin metal sheets can be used for the long-term operation of High Temperature Polymer Electrolyte Fuel Cell stacks.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Werner Lehnert; Werner Lehnert; Holger Janßen; Thea Mildebrath; Achim Edelmann; Patrick Müller; Detlef Stolten; Detlef Stolten;Abstract This paper provides detailed insight into the design, construction, production and verification of a metallic bipolar plate for High Temperature Polymer Electrolyte Fuel Cell stacks. With a focusing on applications with power demands of 5–10 kW, the active cell area is set to a maximum of 100 cm2. The double-plate-concept allows for liquid cooling in the inner bipolar plate compartment. Due to the bipolar plate production by hydroforming of thin stainless steel foils the structure of the coolant compartment is dependent on the gas flow field design. To ensure proper cooling functionality a co-design is necessary. The flow field design, in conjunction with the flow configuration of the reactants (reformate, air) and coolant, considers the effects of hydrogen and oxygen depletion on current density distribution, as well as the temperature profile on carbon monoxide poisoning. These specifications are based on previously published results. For validation, a 5-cell stack with commercial Membrane Electrode Assemblies was operated at 160 °C and 0.2 A/cm2 and regularly interrupted for the polarization curve measurement. After 4700 h of continuous operation, the test was terminated due to a rapid voltage drop in one of the cells. In this paper, it is shown that novel metallic bipolar plates from thin metal sheets can be used for the long-term operation of High Temperature Polymer Electrolyte Fuel Cell stacks.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Ulrich Sauter; Jan Hendrik Ohs; Sebastian Maass; Detlef Stolten;Abstract In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler–Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Ulrich Sauter; Jan Hendrik Ohs; Sebastian Maass; Detlef Stolten;Abstract In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler–Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:Elsevier BV Detlef Stolten; Detlef Stolten; David Severin Ryberg; David Severin Ryberg; Dilara Gulcin Caglayan; Dilara Gulcin Caglayan; Heidi Heinrichs; Jochen Linßen; Martin Robinius;Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.
Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:Elsevier BV Detlef Stolten; Detlef Stolten; David Severin Ryberg; David Severin Ryberg; Dilara Gulcin Caglayan; Dilara Gulcin Caglayan; Heidi Heinrichs; Jochen Linßen; Martin Robinius;Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.
Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Ludger Blum; Ernst Riensche; Reinhard Menzer; Detlef Stolten; Li Zhao;AbstractThis paper describes a detailed process optimization of the mass and energy balances for multi-stage membrane systems used in coal-fired power plants. Based on the recovery rate of 50% or 90% CO2 with 95 mol% CO2 purity, different concepts using recirculation of flue gas and variation of feed gas compressor and vacuum pump on the permeate side were developed and optimized to obtain minimum energy consumption. Simultaneously, a cost model was developed to make a further analysis of the optimized concept in view of the tradeoff balance between material and energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Ludger Blum; Ernst Riensche; Reinhard Menzer; Detlef Stolten; Li Zhao;AbstractThis paper describes a detailed process optimization of the mass and energy balances for multi-stage membrane systems used in coal-fired power plants. Based on the recovery rate of 50% or 90% CO2 with 95 mol% CO2 purity, different concepts using recirculation of flue gas and variation of feed gas compressor and vacuum pump on the permeate side were developed and optimized to obtain minimum energy consumption. Simultaneously, a cost model was developed to make a further analysis of the optimized concept in view of the tradeoff balance between material and energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Detlef Stolten; Detlef Stolten; Andreas Glüsen; Martin Müller;AbstractMethanol is a convenient liquid fuel for fuel cells, but is not converted as efficiently into electrical energy as hydrogen. This is due to the slower reaction of methanol at the anode as well as to methanol permeation.When optimizing the direct methanol fuel cell (DMFC) process, methanol concentration and flow rate, current density and air flow rate must also be taken into account. A high methanol concentration facilitates dynamic operation up to high current densities, but also leads to high methanol permeation. The air flow rate must be adjusted so that the cooling effect of evaporating water is balanced by the heat produced in the cell. Therefore, a cell with low permeation must be operated at low air flow rates to achieve autothermal operation at elevated temperatures, which can in turn reduce cell performance. For each current density, there is an optimum amount of methanol feed.In this paper, we show how these effects have to be balanced using air‐flow rates calculated to ensure thermal equilibrium. It is possible to achieve electrical cell efficiencies of up to 44% in a self‐heating DMFC. Another small increase in efficiency can be achieved by using humidified air at the cathode.
Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Detlef Stolten; Detlef Stolten; Andreas Glüsen; Martin Müller;AbstractMethanol is a convenient liquid fuel for fuel cells, but is not converted as efficiently into electrical energy as hydrogen. This is due to the slower reaction of methanol at the anode as well as to methanol permeation.When optimizing the direct methanol fuel cell (DMFC) process, methanol concentration and flow rate, current density and air flow rate must also be taken into account. A high methanol concentration facilitates dynamic operation up to high current densities, but also leads to high methanol permeation. The air flow rate must be adjusted so that the cooling effect of evaporating water is balanced by the heat produced in the cell. Therefore, a cell with low permeation must be operated at low air flow rates to achieve autothermal operation at elevated temperatures, which can in turn reduce cell performance. For each current density, there is an optimum amount of methanol feed.In this paper, we show how these effects have to be balanced using air‐flow rates calculated to ensure thermal equilibrium. It is possible to achieve electrical cell efficiencies of up to 44% in a self‐heating DMFC. Another small increase in efficiency can be achieved by using humidified air at the cathode.
Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Triesch, Tobias; Klütz, Theresa; Linßen, Jochen; Stolten, Detlef;Sustainable energy, grids and networks 39, 101455 - (2024). doi:10.1016/j.segan.2024.101455 Published by Elsevier, Amsterdam [u.a.]
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Triesch, Tobias; Klütz, Theresa; Linßen, Jochen; Stolten, Detlef;Sustainable energy, grids and networks 39, 101455 - (2024). doi:10.1016/j.segan.2024.101455 Published by Elsevier, Amsterdam [u.a.]
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4524192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Ludger Blum; Murat Peksen; Detlef Stolten; Detlef Stolten; Roland Peters; P. Batfalsky; Qingping Fang;Abstract Based on previous long-term SOFC stack tests, two short stacks (one F20 and one F10 design) were tested in order to investigate stack performance under high fuel utilization (>40%) and possibly also high current densities (>0.5 Acm−2). The F20-design stack was still operated with relatively mild current densities (≤0.5 Acm−2), but with high fuel utilization of up to 90% with 10% pre-reformed liquefied natural gas (LNG). The F10-design stack was operated with 20% humidified H2, but with high fuel utilization of up to 90% and high current densities of up to 1.5 Acm−2. Preliminary analysis shows that both F10- and F20-design stacks can be operated smoothly at a fuel utilization of ∼85% in the temperature range of 750∼800 °C, although an increase in concentration polarization can already be observed at the fuel utilization of ∼80%. Operation with fuel utilization of 90% led to local oxidation of cells at a similar position in both stacks. Based on the calculations with a 1D model, such an effect was assumed to be due to the variation in fuel utilization caused by the temperature gradient in the cell.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Ludger Blum; Murat Peksen; Detlef Stolten; Detlef Stolten; Roland Peters; P. Batfalsky; Qingping Fang;Abstract Based on previous long-term SOFC stack tests, two short stacks (one F20 and one F10 design) were tested in order to investigate stack performance under high fuel utilization (>40%) and possibly also high current densities (>0.5 Acm−2). The F20-design stack was still operated with relatively mild current densities (≤0.5 Acm−2), but with high fuel utilization of up to 90% with 10% pre-reformed liquefied natural gas (LNG). The F10-design stack was operated with 20% humidified H2, but with high fuel utilization of up to 90% and high current densities of up to 1.5 Acm−2. Preliminary analysis shows that both F10- and F20-design stacks can be operated smoothly at a fuel utilization of ∼85% in the temperature range of 750∼800 °C, although an increase in concentration polarization can already be observed at the fuel utilization of ∼80%. Operation with fuel utilization of 90% led to local oxidation of cells at a similar position in both stacks. Based on the calculations with a 1D model, such an effect was assumed to be due to the variation in fuel utilization caused by the temperature gradient in the cell.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.11.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:Elsevier BV Funded by:EC | SOLPARTEC| SOLPARTMaximilian Ryssel; Gkiokchan Moumin; Martin Robinius; Detlef Stolten; Detlef Stolten; Christian Sattler; Peter Markewitz; Li Zhao;Renewable energy 145, 1578-1596 (2020). doi:10.1016/j.renene.2019.07.045 Published by Elsevier Science, Amsterdam [u.a.]
DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:Elsevier BV Funded by:EC | SOLPARTEC| SOLPARTMaximilian Ryssel; Gkiokchan Moumin; Martin Robinius; Detlef Stolten; Detlef Stolten; Christian Sattler; Peter Markewitz; Li Zhao;Renewable energy 145, 1578-1596 (2020). doi:10.1016/j.renene.2019.07.045 Published by Elsevier Science, Amsterdam [u.a.]
DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down DLR publication serverArticle . 2020 . Peer-reviewedFull-Text: https://elib.dlr.de/131129/1/Moumin2019b.pdfData sources: DLR publication serverPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:American Geophysical Union (AGU) Authors: Chen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; +6 AuthorsChen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; Poll, Stefan; Houssoukri Zounogo Wahabou, Yoda; Linssen, Jochen; Vereecken, Harry; Stolten, Detlef; Heinrichs, Heidi;AbstractReliable and highly resolved information about onshore wind energy potential (WEP) is essential for expanding renewable energy to eventually achieve carbon neutrality. In this pilot study, simulated 60 m wind speeds (ws60m) from a km‐scale, convection‐permitting 3.3 km‐resolution ICON‐LAM simulation and often‐used 31 km‐resolution ERA5 reanalysis are evaluated at 18 weather masts. The estimated ICON‐LAM and ERA5 WEPs are then compared using an innovative approach with 1.8 million eligible wind turbine placements over southern Africa. Results show ERA5 underestimates ws60m with a Mean Error (ME) of −1.8 m s−1 (−27%). In contrast, ICON‐LAM shows a ME of −0.1 m s−1 (−1.8%), resulting in a much higher average WEP by 48% compared to ERA5. A combined Global Wind Atlas‐ERA5 product reduces the ws60m underestimation of ERA5 to −0.3 m s−1 (−4.7%), but shows a similar average WEP compared to ERA5 resulting from the WEP spatial heterogeneity.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:American Geophysical Union (AGU) Authors: Chen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; +6 AuthorsChen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; Poll, Stefan; Houssoukri Zounogo Wahabou, Yoda; Linssen, Jochen; Vereecken, Harry; Stolten, Detlef; Heinrichs, Heidi;AbstractReliable and highly resolved information about onshore wind energy potential (WEP) is essential for expanding renewable energy to eventually achieve carbon neutrality. In this pilot study, simulated 60 m wind speeds (ws60m) from a km‐scale, convection‐permitting 3.3 km‐resolution ICON‐LAM simulation and often‐used 31 km‐resolution ERA5 reanalysis are evaluated at 18 weather masts. The estimated ICON‐LAM and ERA5 WEPs are then compared using an innovative approach with 1.8 million eligible wind turbine placements over southern Africa. Results show ERA5 underestimates ws60m with a Mean Error (ME) of −1.8 m s−1 (−27%). In contrast, ICON‐LAM shows a ME of −0.1 m s−1 (−1.8%), resulting in a much higher average WEP by 48% compared to ERA5. A combined Global Wind Atlas‐ERA5 product reduces the ws60m underestimation of ERA5 to −0.3 m s−1 (−4.7%), but shows a similar average WEP compared to ERA5 resulting from the WEP spatial heterogeneity.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Thomas Grube; Detlef Stolten; Ahmet Lokurlu; B. Höhlein;Abstract Highly efficient energy conversion systems with fuel cells for vehicles and stationary applications are currently being discussed all over the world as a technology which will be able to reduce primary energy demand and emissions of limited and climate-relevant pollutants. The high flexibility of fuel-cell systems with respect to energy carriers opens up possibilities of modifying the energy market in the long term. New environmental legislation, above all in the USA, stipulating the introduction of emission-free cars from 2003, has led in the transport sector to an intensified search for alternatives to conventional drive concepts. In stationary applications, numerous demonstration plants and some field tests already implemented reflect the developmental stage of fuel-cell systems. In Germany, a new combined heat and power (CHP) plant modernisation law has been enacted. This act is of special significance for the market launch of fuel cells. A major milestone on the road to market success for all the above-mentioned systems—in order to compete with conventional technologies—is the reduction of costs. In this contribution systems analyses for mobile and stationary applications of fuel-cell systems are presented as well as economic analyses for different fuel-cell systems for stationary applications. In particular, CHP generation based on natural gas as the energy carrier is performed.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Thomas Grube; Detlef Stolten; Ahmet Lokurlu; B. Höhlein;Abstract Highly efficient energy conversion systems with fuel cells for vehicles and stationary applications are currently being discussed all over the world as a technology which will be able to reduce primary energy demand and emissions of limited and climate-relevant pollutants. The high flexibility of fuel-cell systems with respect to energy carriers opens up possibilities of modifying the energy market in the long term. New environmental legislation, above all in the USA, stipulating the introduction of emission-free cars from 2003, has led in the transport sector to an intensified search for alternatives to conventional drive concepts. In stationary applications, numerous demonstration plants and some field tests already implemented reflect the developmental stage of fuel-cell systems. In Germany, a new combined heat and power (CHP) plant modernisation law has been enacted. This act is of special significance for the market launch of fuel cells. A major milestone on the road to market success for all the above-mentioned systems—in order to compete with conventional technologies—is the reduction of costs. In this contribution systems analyses for mobile and stationary applications of fuel-cell systems are presented as well as economic analyses for different fuel-cell systems for stationary applications. In particular, CHP generation based on natural gas as the energy carrier is performed.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-3199(02)00242-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Werner Lehnert; Werner Lehnert; Holger Janßen; Thea Mildebrath; Achim Edelmann; Patrick Müller; Detlef Stolten; Detlef Stolten;Abstract This paper provides detailed insight into the design, construction, production and verification of a metallic bipolar plate for High Temperature Polymer Electrolyte Fuel Cell stacks. With a focusing on applications with power demands of 5–10 kW, the active cell area is set to a maximum of 100 cm2. The double-plate-concept allows for liquid cooling in the inner bipolar plate compartment. Due to the bipolar plate production by hydroforming of thin stainless steel foils the structure of the coolant compartment is dependent on the gas flow field design. To ensure proper cooling functionality a co-design is necessary. The flow field design, in conjunction with the flow configuration of the reactants (reformate, air) and coolant, considers the effects of hydrogen and oxygen depletion on current density distribution, as well as the temperature profile on carbon monoxide poisoning. These specifications are based on previously published results. For validation, a 5-cell stack with commercial Membrane Electrode Assemblies was operated at 160 °C and 0.2 A/cm2 and regularly interrupted for the polarization curve measurement. After 4700 h of continuous operation, the test was terminated due to a rapid voltage drop in one of the cells. In this paper, it is shown that novel metallic bipolar plates from thin metal sheets can be used for the long-term operation of High Temperature Polymer Electrolyte Fuel Cell stacks.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Werner Lehnert; Werner Lehnert; Holger Janßen; Thea Mildebrath; Achim Edelmann; Patrick Müller; Detlef Stolten; Detlef Stolten;Abstract This paper provides detailed insight into the design, construction, production and verification of a metallic bipolar plate for High Temperature Polymer Electrolyte Fuel Cell stacks. With a focusing on applications with power demands of 5–10 kW, the active cell area is set to a maximum of 100 cm2. The double-plate-concept allows for liquid cooling in the inner bipolar plate compartment. Due to the bipolar plate production by hydroforming of thin stainless steel foils the structure of the coolant compartment is dependent on the gas flow field design. To ensure proper cooling functionality a co-design is necessary. The flow field design, in conjunction with the flow configuration of the reactants (reformate, air) and coolant, considers the effects of hydrogen and oxygen depletion on current density distribution, as well as the temperature profile on carbon monoxide poisoning. These specifications are based on previously published results. For validation, a 5-cell stack with commercial Membrane Electrode Assemblies was operated at 160 °C and 0.2 A/cm2 and regularly interrupted for the polarization curve measurement. After 4700 h of continuous operation, the test was terminated due to a rapid voltage drop in one of the cells. In this paper, it is shown that novel metallic bipolar plates from thin metal sheets can be used for the long-term operation of High Temperature Polymer Electrolyte Fuel Cell stacks.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.08.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Ulrich Sauter; Jan Hendrik Ohs; Sebastian Maass; Detlef Stolten;Abstract In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler–Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Ulrich Sauter; Jan Hendrik Ohs; Sebastian Maass; Detlef Stolten;Abstract In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler–Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:Elsevier BV Detlef Stolten; Detlef Stolten; David Severin Ryberg; David Severin Ryberg; Dilara Gulcin Caglayan; Dilara Gulcin Caglayan; Heidi Heinrichs; Jochen Linßen; Martin Robinius;Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.
Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:Elsevier BV Detlef Stolten; Detlef Stolten; David Severin Ryberg; David Severin Ryberg; Dilara Gulcin Caglayan; Dilara Gulcin Caglayan; Heidi Heinrichs; Jochen Linßen; Martin Robinius;Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.
Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Ludger Blum; Ernst Riensche; Reinhard Menzer; Detlef Stolten; Li Zhao;AbstractThis paper describes a detailed process optimization of the mass and energy balances for multi-stage membrane systems used in coal-fired power plants. Based on the recovery rate of 50% or 90% CO2 with 95 mol% CO2 purity, different concepts using recirculation of flue gas and variation of feed gas compressor and vacuum pump on the permeate side were developed and optimized to obtain minimum energy consumption. Simultaneously, a cost model was developed to make a further analysis of the optimized concept in view of the tradeoff balance between material and energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Ludger Blum; Ernst Riensche; Reinhard Menzer; Detlef Stolten; Li Zhao;AbstractThis paper describes a detailed process optimization of the mass and energy balances for multi-stage membrane systems used in coal-fired power plants. Based on the recovery rate of 50% or 90% CO2 with 95 mol% CO2 purity, different concepts using recirculation of flue gas and variation of feed gas compressor and vacuum pump on the permeate side were developed and optimized to obtain minimum energy consumption. Simultaneously, a cost model was developed to make a further analysis of the optimized concept in view of the tradeoff balance between material and energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Detlef Stolten; Detlef Stolten; Andreas Glüsen; Martin Müller;AbstractMethanol is a convenient liquid fuel for fuel cells, but is not converted as efficiently into electrical energy as hydrogen. This is due to the slower reaction of methanol at the anode as well as to methanol permeation.When optimizing the direct methanol fuel cell (DMFC) process, methanol concentration and flow rate, current density and air flow rate must also be taken into account. A high methanol concentration facilitates dynamic operation up to high current densities, but also leads to high methanol permeation. The air flow rate must be adjusted so that the cooling effect of evaporating water is balanced by the heat produced in the cell. Therefore, a cell with low permeation must be operated at low air flow rates to achieve autothermal operation at elevated temperatures, which can in turn reduce cell performance. For each current density, there is an optimum amount of methanol feed.In this paper, we show how these effects have to be balanced using air‐flow rates calculated to ensure thermal equilibrium. It is possible to achieve electrical cell efficiencies of up to 44% in a self‐heating DMFC. Another small increase in efficiency can be achieved by using humidified air at the cathode.
Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Detlef Stolten; Detlef Stolten; Andreas Glüsen; Martin Müller;AbstractMethanol is a convenient liquid fuel for fuel cells, but is not converted as efficiently into electrical energy as hydrogen. This is due to the slower reaction of methanol at the anode as well as to methanol permeation.When optimizing the direct methanol fuel cell (DMFC) process, methanol concentration and flow rate, current density and air flow rate must also be taken into account. A high methanol concentration facilitates dynamic operation up to high current densities, but also leads to high methanol permeation. The air flow rate must be adjusted so that the cooling effect of evaporating water is balanced by the heat produced in the cell. Therefore, a cell with low permeation must be operated at low air flow rates to achieve autothermal operation at elevated temperatures, which can in turn reduce cell performance. For each current density, there is an optimum amount of methanol feed.In this paper, we show how these effects have to be balanced using air‐flow rates calculated to ensure thermal equilibrium. It is possible to achieve electrical cell efficiencies of up to 44% in a self‐heating DMFC. Another small increase in efficiency can be achieved by using humidified air at the cathode.
Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Cells arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201900234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu