- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Feb 2020 Spain, Spain, Italy, Switzerland, Spain, NetherlandsPublisher:Wiley Funded by:EC | ECOHYDRY, EC | CASCADEEC| ECOHYDRY ,EC| CASCADEAuthors: Francisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; +14 AuthorsFrancisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Victor M. Santana; Victor M. Santana; V. Ramón Vallejo; Ángeles G. Mayor; Ángeles G. Mayor; Ángeles G. Mayor; Alejandro Valdecantos; Mara Baudena; Lia Hemerik; M. Jaime Baeza; Maarten B. Eppinga; Maarten B. Eppinga; Susana Bautista;SummaryRecent observations suggest that repeated fires could drive Mediterranean forests to shrublands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly favours shrubland persistence and may be strengthened in the future by predicted increased aridity. An assessment was made of how fires and aridity in combination modulated the dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to maintain shrubland as an alternative stable state to forest.A model was developed for vegetation dynamics, including stochastic fires and different plant fire‐responses. Parameters were calibrated using observational data from a period up to 100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France.The forest state was resilient to the separate impact of fires and increased aridity. However, water stress could convert forests into open shrublands by hampering post‐fire recovery, with a possible tipping point at intermediate aridity.Projected increases in aridity may reduce the resilience of Mediterranean forests against fires and drive post‐fire ecosystem dynamics toward open shrubland. The main effect of increased aridity is the limitation of post‐fire recovery. Including plant fire‐responses is thus fundamental when modelling the fate of Mediterranean‐type vegetation under climate‐change scenarios.
IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 75 Powered bymore_vert IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, France, Netherlands, France, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:NWO | Adaptive Semi-Strong Ecos...NWO| Adaptive Semi-Strong Ecosystem DynamicsAlexandre Bouvet; Vincent Deblauwe; Vincent Deblauwe; Max Rietkerk; Arjen Doelman; Olfa Jaïbi; Maarten B. Eppinga; Robbin Bastiaansen; Koen Siteur; Koen Siteur; Stéphane Mermoz; Eric Siero;Significance Today, vast areas of drylands in semiarid climates face the dangers of desertification. To understand the driving mechanisms behind this effect, many theoretical models have been created. These models provide insight into the resilience of dryland ecosystems. However, until now, comparisons with reality were merely visual. In this article, a systematic comparison is performed using data on wavenumber, biomass, and migration speed of vegetation patterns in Somalia. In agreement with reaction–diffusion models, a wide distribution of regular pattern wavenumbers was found in the data. This highlights the potential for extrapolating predictions of those models to real ecosystems, including those that elucidate how spatial self-organization of vegetation enhances ecosystem resilience.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/98305Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-03272328Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1804771115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/98305Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-03272328Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1804771115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Mar 2021 SwitzerlandPublisher:IOP Publishing Authors: van 't Veen, Hanneke; Eppinga, Maarten Boudewijn; Mwampamba, Tuyeni Heita; Ferreira Dos Santos, Maria João;Abstract Mitigation of greenhouse gas emissions through transitions to biomass-based renewable energy may result in higher land needs, affecting ecosystem services and livelihoods. Charcoal is a biomass-based renewable energy that provides energy for hundreds of millions of households worldwide and generates income for 40 million people. However, it currently causes up to 7% of the global deforestation rate. In the absence of affordable alternative fuels, it is necessary to identify conditions that foster sustainable charcoal production. In this study, we (a) develop a stylized model that simulates feedbacks between forest biomass and charcoal production, and (b) use the model to examine the effects of interventions that foster sustainable charcoal systems through transitions to communal management or private systems, increases in carbonization efficiency and charcoal demand reductions. Our model simulations suggest that at low demand, a transition is unnecessary. At intermediate to high demands, interventions that increase carbonization efficiency and/or reduce demand should be combined with transitions to communal management (at intermediate forest biomass levels) or private systems (at low forest biomass levels) to ensure long-term sustainability of charcoal systems and avoid collapse within 100 years. These results highlight multiple pathways for sustainable charcoal production systems tailored to meet supply and demand. All pathways are feasible across tropical biomes and could foster the simultaneous continuation of forests and charcoal production in the near future.
Environmental Resear... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe14d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe14d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Mar 2020 Netherlands, Netherlands, SwitzerlandPublisher:Wiley Funded by:NWO | Adaptive Semi-Strong Ecos...NWO| Adaptive Semi-Strong Ecosystem DynamicsAuthors: Bastiaansen, Robbin; Doelman, Arjen; Eppinga, Maarten B; Rietkerk, Max;AbstractIn a rapidly changing world, quantifying ecosystem resilience is an important challenge. Historically, resilience has been defined via models that do not take spatial effects into account. These systems can only adapt via uniform adjustments. In reality, however, the response is not necessarily uniform, and can lead to the formation of (self‐organised) spatial patterns – typically localised vegetation patches. Classical measures of resilience cannot capture the emerging dynamics in spatially self‐organised systems, including transitions between patterned states that have limited impact on ecosystem structure and productivity. We present a framework of interlinked phase portraits that appropriately quantifies the resilience of patterned states, which depends on the number of patches, the distances between them and environmental conditions. We show how classical resilience concepts fail to distinguish between small and large pattern transitions, and find that the variance in interpatch distances provides a suitable indicator for the type of imminent transition. Subsequently, we describe the dependency of ecosystem degradation based on the rate of climatic change: slow change leads to sporadic, large transitions, whereas fast change causes a rapid sequence of smaller transitions. Finally, we discuss how pre‐emptive removal of patches can minimise productivity losses during pattern transitions, constituting a viable conservation strategy.
Ecology Letters arrow_drop_down Zurich Open Repository and ArchiveArticle . 2020License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Zurich Open Repository and ArchiveArticle . 2020License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Feb 2020 Spain, Spain, Italy, Switzerland, Spain, NetherlandsPublisher:Wiley Funded by:EC | ECOHYDRY, EC | CASCADEEC| ECOHYDRY ,EC| CASCADEAuthors: Francisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; +14 AuthorsFrancisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Victor M. Santana; Victor M. Santana; V. Ramón Vallejo; Ángeles G. Mayor; Ángeles G. Mayor; Ángeles G. Mayor; Alejandro Valdecantos; Mara Baudena; Lia Hemerik; M. Jaime Baeza; Maarten B. Eppinga; Maarten B. Eppinga; Susana Bautista;SummaryRecent observations suggest that repeated fires could drive Mediterranean forests to shrublands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly favours shrubland persistence and may be strengthened in the future by predicted increased aridity. An assessment was made of how fires and aridity in combination modulated the dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to maintain shrubland as an alternative stable state to forest.A model was developed for vegetation dynamics, including stochastic fires and different plant fire‐responses. Parameters were calibrated using observational data from a period up to 100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France.The forest state was resilient to the separate impact of fires and increased aridity. However, water stress could convert forests into open shrublands by hampering post‐fire recovery, with a possible tipping point at intermediate aridity.Projected increases in aridity may reduce the resilience of Mediterranean forests against fires and drive post‐fire ecosystem dynamics toward open shrubland. The main effect of increased aridity is the limitation of post‐fire recovery. Including plant fire‐responses is thus fundamental when modelling the fate of Mediterranean‐type vegetation under climate‐change scenarios.
IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 75 Powered bymore_vert IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, France, Netherlands, France, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:NWO | Adaptive Semi-Strong Ecos...NWO| Adaptive Semi-Strong Ecosystem DynamicsAlexandre Bouvet; Vincent Deblauwe; Vincent Deblauwe; Max Rietkerk; Arjen Doelman; Olfa Jaïbi; Maarten B. Eppinga; Robbin Bastiaansen; Koen Siteur; Koen Siteur; Stéphane Mermoz; Eric Siero;Significance Today, vast areas of drylands in semiarid climates face the dangers of desertification. To understand the driving mechanisms behind this effect, many theoretical models have been created. These models provide insight into the resilience of dryland ecosystems. However, until now, comparisons with reality were merely visual. In this article, a systematic comparison is performed using data on wavenumber, biomass, and migration speed of vegetation patterns in Somalia. In agreement with reaction–diffusion models, a wide distribution of regular pattern wavenumbers was found in the data. This highlights the potential for extrapolating predictions of those models to real ecosystems, including those that elucidate how spatial self-organization of vegetation enhances ecosystem resilience.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/98305Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-03272328Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1804771115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/98305Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-03272328Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1804771115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Mar 2021 SwitzerlandPublisher:IOP Publishing Authors: van 't Veen, Hanneke; Eppinga, Maarten Boudewijn; Mwampamba, Tuyeni Heita; Ferreira Dos Santos, Maria João;Abstract Mitigation of greenhouse gas emissions through transitions to biomass-based renewable energy may result in higher land needs, affecting ecosystem services and livelihoods. Charcoal is a biomass-based renewable energy that provides energy for hundreds of millions of households worldwide and generates income for 40 million people. However, it currently causes up to 7% of the global deforestation rate. In the absence of affordable alternative fuels, it is necessary to identify conditions that foster sustainable charcoal production. In this study, we (a) develop a stylized model that simulates feedbacks between forest biomass and charcoal production, and (b) use the model to examine the effects of interventions that foster sustainable charcoal systems through transitions to communal management or private systems, increases in carbonization efficiency and charcoal demand reductions. Our model simulations suggest that at low demand, a transition is unnecessary. At intermediate to high demands, interventions that increase carbonization efficiency and/or reduce demand should be combined with transitions to communal management (at intermediate forest biomass levels) or private systems (at low forest biomass levels) to ensure long-term sustainability of charcoal systems and avoid collapse within 100 years. These results highlight multiple pathways for sustainable charcoal production systems tailored to meet supply and demand. All pathways are feasible across tropical biomes and could foster the simultaneous continuation of forests and charcoal production in the near future.
Environmental Resear... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe14d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe14d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Mar 2020 Netherlands, Netherlands, SwitzerlandPublisher:Wiley Funded by:NWO | Adaptive Semi-Strong Ecos...NWO| Adaptive Semi-Strong Ecosystem DynamicsAuthors: Bastiaansen, Robbin; Doelman, Arjen; Eppinga, Maarten B; Rietkerk, Max;AbstractIn a rapidly changing world, quantifying ecosystem resilience is an important challenge. Historically, resilience has been defined via models that do not take spatial effects into account. These systems can only adapt via uniform adjustments. In reality, however, the response is not necessarily uniform, and can lead to the formation of (self‐organised) spatial patterns – typically localised vegetation patches. Classical measures of resilience cannot capture the emerging dynamics in spatially self‐organised systems, including transitions between patterned states that have limited impact on ecosystem structure and productivity. We present a framework of interlinked phase portraits that appropriately quantifies the resilience of patterned states, which depends on the number of patches, the distances between them and environmental conditions. We show how classical resilience concepts fail to distinguish between small and large pattern transitions, and find that the variance in interpatch distances provides a suitable indicator for the type of imminent transition. Subsequently, we describe the dependency of ecosystem degradation based on the rate of climatic change: slow change leads to sporadic, large transitions, whereas fast change causes a rapid sequence of smaller transitions. Finally, we discuss how pre‐emptive removal of patches can minimise productivity losses during pattern transitions, constituting a viable conservation strategy.
Ecology Letters arrow_drop_down Zurich Open Repository and ArchiveArticle . 2020License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Zurich Open Repository and ArchiveArticle . 2020License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu