- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Linkage Projects - Grant ..., ARC | Integrated Advanced X-ray..., ARC | The Nanoscale Characteris... +1 projectsARC| Linkage Projects - Grant ID: LP150100730 ,ARC| Integrated Advanced X-ray Diffraction Facility ,ARC| The Nanoscale Characterisation Centre WA Focussed Ion Beam Nanofabrication and Milling Facility ,ARC| Future Fellowships - Grant ID: FT160100303Authors: Kasper T. Møller; Kyran Williamson; Craig E. Buckley; Mark Paskevicius;doi: 10.1039/d0ta03671d
handle: 20.500.11937/91768
A reactive carbonate composite leads to destabilisation of BaCO3 and increased reaction kinetics by the addition of CaCO3.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta03671d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta03671d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 AustraliaPublisher:Elsevier BV Craig E. Buckley; Kasper T. Møller; Kasper T. Møller; Terry D. Humphries; Mark Paskevicius; Amanda Berger;handle: 20.500.11937/90581
For renewable energy sources to replace fossil fuels, large scale energy storage is required and thermal batteries have been identified as a commercially viable option. In this study, a 3.2 kg prototype (0.82 kWhth) of the limestone-based CaCO3-Al2O3 (16.7 wt%) thermochemical energy storage system was investigated near 900 °C in three different configurations: (i) CaCO3 was thermally cycled between 850 °C during carbonation and 950 °C during calcination whilst activated carbon was utilised as a CO2 gas storage material. (ii) The CaCO3 temperature was kept constant at 900 °C while utilising the activated carbon gas storage method to drive the thermochemical reaction. (iii) A mechanical gas compressor was used to compress CO2 into volumetric gas bottles to achieve a significant under/overpressure upon calcination/carbonation, i.e. ≤ 0.8 bar and > 5 bar, respectively, compared to the ∼1 bar thermodynamic equilibrium pressure at 900 °C. Scenarios (i) and (iii) showed a 64% energy capacity retention at the end of the 10th cycle. The decrease in capacity was partly assigned to the formation of mayenite, Ca12Al14O33, and thus the absence of the beneficial properties of the expected Ca5Al6O14 while sintering was also observed. The 316L stainless-steel reactor was investigated in regards to corrosion issues after being under CO2 atmosphere above 850 °C for approximately 1400 h, and showed no significant degradation. This study illustrates the potential for industrial scale up of catalysed CaCO3 as a thermal battery and provides a viable alternative to the calcium-looping process.
Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2021.100168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2021.100168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:IOP Publishing Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran...ARC| Linkage Projects - Grant ID: LP150100730 ,ARC| Discovery Projects - Grant ID: DP200102301Marcus Adams; Craig E Buckley; Markus Busch; Robin Bunzel; Michael Felderhoff; Tae Wook Heo; Terry D Humphries; Torben R Jensen; Julian Klug; Karl H Klug; Kasper T Møller; Mark Paskevicius; Stefan Peil; Kateryna Peinecke; Drew A Sheppard; Alastair D Stuart; Robert Urbanczyk; Fei Wang; Gavin S Walker; Brandon C Wood; Danny Weiss; David M Grant;Abstract The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction mechanisms of both the forward and backward MH reaction is presented, where this model is extrapolated to a small pilot scale reactor, detailing how a TCES could function/operate in a real-world setting using a conventional shell & tube reactor approach. Further, the important parameter of effective thermal conductivity is explored using an innovative multi-scale model, to providing extensive and relevant experimental data useful for reactor and system design. Promising high temperature MH material configurations may be tuned by either destabilisation, such as using additions to Ca and Sr based hydrides, or by stabilisation, such as fluorine addition to NaH, MgH2, or NaMgH3. This versatile thermodynamic tuning is discussed, including the challenges in accurately measuring the material characteristics at elevated temperatures (500 –700 °C). Attention to scale up is explored, including generic design and prototype considerations, and an example of a novel pilot-scale pillow-plate reactor currently in development; where materials used are discussed, overall tank design scope and system integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac72ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac72ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Linkage Projects - Grant ..., ARC | Future Fellowships - Gran..., ARC | Integrated Advanced X-ray...ARC| Linkage Projects - Grant ID: LP150100730 ,ARC| Future Fellowships - Grant ID: FT160100303 ,ARC| Integrated Advanced X-ray Diffraction FacilityAuthors: Terry D. Humphries; Kasper T. Møller; William D. A. Rickard; M. Veronica Sofianos; +3 AuthorsTerry D. Humphries; Kasper T. Møller; William D. A. Rickard; M. Veronica Sofianos; Shaomin Liu; Craig E. Buckley; Mark Paskevicius;doi: 10.1039/c8ta07254j
handle: 20.500.11937/74755
Reversible storage of carbon dioxide in dolomite using a catalyst allows viable thermal energy storage technology.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ta07254j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ta07254j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Denmark, AustraliaPublisher:MDPI AG Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP150100730Craig E. Buckley; Torben R. Jensen; Kasper T. Møller; Dorthe Bomholdt Ravnsbæk; Drew A. Sheppard; Drew A. Sheppard; Hai Wen Li; Etsuo Akiba;doi: 10.3390/en10101645
handle: 20.500.11937/65449
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 182 citations 182 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Linkage Projects - Grant ..., ARC | Integrated Advanced X-ray..., ARC | The Nanoscale Characteris... +1 projectsARC| Linkage Projects - Grant ID: LP150100730 ,ARC| Integrated Advanced X-ray Diffraction Facility ,ARC| The Nanoscale Characterisation Centre WA Focussed Ion Beam Nanofabrication and Milling Facility ,ARC| Future Fellowships - Grant ID: FT160100303Authors: Kasper T. Møller; Kyran Williamson; Craig E. Buckley; Mark Paskevicius;doi: 10.1039/d0ta03671d
handle: 20.500.11937/91768
A reactive carbonate composite leads to destabilisation of BaCO3 and increased reaction kinetics by the addition of CaCO3.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta03671d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta03671d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 AustraliaPublisher:Elsevier BV Craig E. Buckley; Kasper T. Møller; Kasper T. Møller; Terry D. Humphries; Mark Paskevicius; Amanda Berger;handle: 20.500.11937/90581
For renewable energy sources to replace fossil fuels, large scale energy storage is required and thermal batteries have been identified as a commercially viable option. In this study, a 3.2 kg prototype (0.82 kWhth) of the limestone-based CaCO3-Al2O3 (16.7 wt%) thermochemical energy storage system was investigated near 900 °C in three different configurations: (i) CaCO3 was thermally cycled between 850 °C during carbonation and 950 °C during calcination whilst activated carbon was utilised as a CO2 gas storage material. (ii) The CaCO3 temperature was kept constant at 900 °C while utilising the activated carbon gas storage method to drive the thermochemical reaction. (iii) A mechanical gas compressor was used to compress CO2 into volumetric gas bottles to achieve a significant under/overpressure upon calcination/carbonation, i.e. ≤ 0.8 bar and > 5 bar, respectively, compared to the ∼1 bar thermodynamic equilibrium pressure at 900 °C. Scenarios (i) and (iii) showed a 64% energy capacity retention at the end of the 10th cycle. The decrease in capacity was partly assigned to the formation of mayenite, Ca12Al14O33, and thus the absence of the beneficial properties of the expected Ca5Al6O14 while sintering was also observed. The 316L stainless-steel reactor was investigated in regards to corrosion issues after being under CO2 atmosphere above 850 °C for approximately 1400 h, and showed no significant degradation. This study illustrates the potential for industrial scale up of catalysed CaCO3 as a thermal battery and provides a viable alternative to the calcium-looping process.
Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2021.100168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2021.100168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:IOP Publishing Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran...ARC| Linkage Projects - Grant ID: LP150100730 ,ARC| Discovery Projects - Grant ID: DP200102301Marcus Adams; Craig E Buckley; Markus Busch; Robin Bunzel; Michael Felderhoff; Tae Wook Heo; Terry D Humphries; Torben R Jensen; Julian Klug; Karl H Klug; Kasper T Møller; Mark Paskevicius; Stefan Peil; Kateryna Peinecke; Drew A Sheppard; Alastair D Stuart; Robert Urbanczyk; Fei Wang; Gavin S Walker; Brandon C Wood; Danny Weiss; David M Grant;Abstract The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction mechanisms of both the forward and backward MH reaction is presented, where this model is extrapolated to a small pilot scale reactor, detailing how a TCES could function/operate in a real-world setting using a conventional shell & tube reactor approach. Further, the important parameter of effective thermal conductivity is explored using an innovative multi-scale model, to providing extensive and relevant experimental data useful for reactor and system design. Promising high temperature MH material configurations may be tuned by either destabilisation, such as using additions to Ca and Sr based hydrides, or by stabilisation, such as fluorine addition to NaH, MgH2, or NaMgH3. This versatile thermodynamic tuning is discussed, including the challenges in accurately measuring the material characteristics at elevated temperatures (500 –700 °C). Attention to scale up is explored, including generic design and prototype considerations, and an example of a novel pilot-scale pillow-plate reactor currently in development; where materials used are discussed, overall tank design scope and system integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac72ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac72ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Linkage Projects - Grant ..., ARC | Future Fellowships - Gran..., ARC | Integrated Advanced X-ray...ARC| Linkage Projects - Grant ID: LP150100730 ,ARC| Future Fellowships - Grant ID: FT160100303 ,ARC| Integrated Advanced X-ray Diffraction FacilityAuthors: Terry D. Humphries; Kasper T. Møller; William D. A. Rickard; M. Veronica Sofianos; +3 AuthorsTerry D. Humphries; Kasper T. Møller; William D. A. Rickard; M. Veronica Sofianos; Shaomin Liu; Craig E. Buckley; Mark Paskevicius;doi: 10.1039/c8ta07254j
handle: 20.500.11937/74755
Reversible storage of carbon dioxide in dolomite using a catalyst allows viable thermal energy storage technology.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ta07254j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ta07254j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Denmark, AustraliaPublisher:MDPI AG Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP150100730Craig E. Buckley; Torben R. Jensen; Kasper T. Møller; Dorthe Bomholdt Ravnsbæk; Drew A. Sheppard; Drew A. Sheppard; Hai Wen Li; Etsuo Akiba;doi: 10.3390/en10101645
handle: 20.500.11937/65449
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 182 citations 182 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu