- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Tobias Placke; Mirco Ruttert; Julián Martínez-Fernández; Martin Winter; Martin Winter; Joaquín Ramírez-Rico; Andreas Heckmann; Aurora Gomez-Martin;AbstractGraphitized carbon materials from biomass resources were successfully synthesized with an iron catalyst, and their electrochemical performance as anode materials for lithium‐ion batteries (LIBs) was investigated. Peak pyrolysis temperatures between 850 and 2000 °C were covered to study the effect of crystallinity and microstructural parameters on the anodic behavior, with a focus on the first‐cycle Coulombic efficiency, reversible specific capacity, and rate performance. In terms of capacity, results at the highest temperatures are comparable to those of commercially used synthetic graphite derived from a petroleum coke precursor at higher temperatures, and up to twice as much as that of uncatalyzed biomass‐derived carbons. The opportunity to graphitize low‐cost biomass resources at moderate temperatures through this one‐step environmentally friendly process, and the positive effects on the specific capacity, make it interesting to develop more sustainable graphite‐based anodes for LIBs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201800831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 download downloads 21 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201800831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, Germany, SpainPublisher:MDPI AG Funded by:EC | SeNSEEC| SeNSEAuthors: Reissig, Friederike; Ramirez-Rico, Joaquin; Placke, Tobias Johannes; Winter, Martin; +2 AuthorsReissig, Friederike; Ramirez-Rico, Joaquin; Placke, Tobias Johannes; Winter, Martin; Schmuch, Richard; Gomez-Martin, Aurora;handle: 10261/355506
To achieve a broader public acceptance for electric vehicles based on lithium-ion battery (LIB) technology, long driving ranges, low cost, and high safety are needed. A promising pathway to address these key parameters lies in the further improvement of Ni-rich cathode materials for LIB cells. Despite the higher achieved capacities and thus energy densities, there are major drawbacks in terms of capacity retention and thermal stability (of the charged cathode) which are crucial for customer acceptance and can be mitigated by protecting cathode particles. We studied the impact of surface modifications on cycle life and thermal stability of LiNi0.90Co0.05Mn0.05O2 layered oxide cathodes with WO3 by a simple sol–gel coating process. Several advanced analytical techniques such as low-energy ion scattering, differential scanning calorimetry, and high-temperature synchrotron X-ray powder diffraction of delithiated cathode materials, as well as charge/discharge cycling give significant insights into the impact of surface coverage of the coatings on mitigating degradation mechanisms. The results show that successful surface modifications of WO3 with a surface coverage of only 20% can prolong the cycle life of an LIB cell and play a crucial role in improving the thermal stability and, hence, the safety of LIBs.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/5/245/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/9/5/245/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9050245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 63 Powered bymore_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/5/245/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/9/5/245/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9050245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Tobias Placke; Arno Kwade; Christine Nowak; Martin Winter; Martin Winter; Wolfgang Haselrieder; Linus Froboese;In almost all state‐of‐the‐art lithium‐ion batteries, the negative electrode is made from graphite. For dual‐ion batteries (DIBs), graphite electrodes can even be used as negative and positive electrodes as the electrolyte provides both cations and anions for energy storage. As the amount of active material is very high in graphite electrodes, one of the main structure‐controlling parameters is its particle size distribution (PSD). Based on changes in the active material particle size and resulting changes in electrode structure, the corresponding cell characteristics like coulombic efficiency or power density are strongly affected. Herein, results for graphite positive electrodes manufactured with different PSDs of one typical commercial synthetic graphite are displayed. A high‐performance single‐wheel air classifier is used to create the differently distributed graphite particle fractions that do not vary in particle shapes for all fractions created. To gain a better understanding of the particle size impact on electrode properties, the electronic and mechanical properties, as well as the electrode structure, are investigated. The electrochemical performance of the Li metal/graphite system is correlated with structure properties influenced by PSD.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Tobias Placke; Olga Fromm; Guido Schmuelling; Martin Winter; Sascha Nowak; Hinrich-W. Meyer; Paul Meister; Sergej Rothermel;doi: 10.1039/c4ee01873g
We present highly promising results for the use of graphite as both electrodes in a “dual-carbon” cell. An ionic liquid-based electrolyte mixture allows stable and highly reversible ion intercalation/de-intercalation into/from the electrodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01873g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 342 citations 342 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01873g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Wiley Jens M. Wrogemann; Olga Fromm; Fabian Deckwirth; Kolja Beltrop; Andreas Heckmann; Martin Winter; Tobias Placke;AbstractCarbons are considered as anode active materials in potassium‐ion batteries (PIBs). Here, the correlation between material properties of disordered (non‐graphitic) and ordered graphitic carbons and their electrochemical performance in carbon||K metal cells is evaluated. First, carbons obtained from heat treatment of petroleum coke at temperatures from 800 to 2800 °C are analyzed regarding their microstructure and surface properties. Electrochemical performance metrics for K+ ion storage like specific capacity and Coulombic efficiency (CEff) are correlated with surface area, non‐basal planes and microstructure properties, and compared to Li+ ion storage. For disordered carbons, the specific capacity can be clearly correlated with the defect surface area. For highly ordered graphitic carbons, the degree of graphitization strongly determines the specific capacity. The initial CEff of graphitic carbons shows a strong correlation with basal and non‐basal planes. Second, kinetic limitations of ordered graphitic carbons are re‐evaluated by analyzing commercial graphites regarding particle size and surface properties. A clear correlation between particle size, surface area and well‐known challenges of graphitic carbons in terms of low‐rate capability and voltage hysteresis is observed. This work emphasizes the importance of bulk and surface material properties for K+ ion storage and gives important insights for future particle design of promising carbon anodes for PIB cells.
Batteries & Supercap... arrow_drop_down Batteries & SupercapsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202200045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries & Supercap... arrow_drop_down Batteries & SupercapsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202200045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:MDPI AG Florian Holtstiege; Peer Bärmann; Roman Nölle; Martin Winter; Tobias Placke;In order to meet the sophisticated demands for large-scale applications such as electro-mobility, next generation energy storage technologies require advanced electrode active materials with enhanced gravimetric and volumetric capacities to achieve increased gravimetric energy and volumetric energy densities. However, most of these materials suffer from high 1st cycle active lithium losses, e.g., caused by solid electrolyte interphase (SEI) formation, which in turn hinder their broad commercial use so far. In general, the loss of active lithium permanently decreases the available energy by the consumption of lithium from the positive electrode material. Pre-lithiation is considered as a highly appealing technique to compensate for active lithium losses and, therefore, to increase the practical energy density. Various pre-lithiation techniques have been evaluated so far, including electrochemical and chemical pre-lithiation, pre-lithiation with the help of additives or the pre-lithiation by direct contact to lithium metal. In this review article, we will give a comprehensive overview about the various concepts for pre lithiation and controversially discuss their advantages and challenges. Furthermore, we will critically discuss possible effects on the cell performance and stability and assess the techniques with regard to their possible commercial exploration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 294 citations 294 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Authors: Wei Liu; Tobias Placke; K.T. Chau;handle: 10397/107849
Popularization of electric vehicles (EVs) is an effective solution to promote carbon neutrality, thus combating the climate crisis. Advances in EV batteries and battery management interrelate with government policies and user experiences closely. This article reviews the evolutions and challenges of (i) state-of-the-art battery technologies and (ii) state-of-the-art battery management technologies for hybrid and pure EVs. The key is to reveal the major features, pros and cons, new technological breakthroughs, future challenges, and opportunities for advancing electric mobility. This critical review envisions the development trends of battery chemistry technologies, technologies regarding batteries, and technologies replacing batteries. Wherein, lithium-ion batteries, lithium-metal batteries (such as solid state batteries), and technologies beyond lithium (‘post-lithium’) will be actively explored in the next decades. Meanwhile, the data-driven electrothermal model is promising and identified with an impressive performance. Technologies of move-and-charge and wireless power drive will help alleviate the overdependence of batteries. Finally, future high-energy batteries and their management technologies will actively embrace the information and energy internet for data and energy sharing.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/107849Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 429 citations 429 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/107849Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 28 Aug 2023 GermanyPublisher:Wiley Funded by:EC | SeNSEEC| SeNSEMarcel Heidbüchel; Thorsten Schultz; Tobias Placke; Martin Winter; Norbert Koch; Richard Schmuch; Aurora Gomez‐Martin;AbstractAqueous processing of Ni‐rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state‐of‐the‐art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni‐rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi0.8Co0.1Mn0.1O2 (NCM811) by the addition of lithium sulfate (Li2SO4) during electrode paste dispersion. The aqueously processed electrodes retained 80 % of their initial capacity after 400 cycles in NCM811||graphite full cells, while electrodes processed without the addition of Li2SO4 reached 80 % of their capacity after only 200 cycles. Furthermore, with regard to electrochemical performance, aqueously processed electrodes using carbon‐coated Al current collector outperformed reference electrodes based on state‐of‐the‐art production processes involving N‐methyl‐2‐pyrrolidone as processing solvent and fluorinated binders. The positive impact on cycle life by the addition of Li2SO4 stemmed from a formed sulfate coating as well as different surface species, protecting the NCM811 surface against degradation. Results reported herein open a new avenue for the processing of Ni‐rich NCM electrodes using more sustainable aqueous routes.
ChemSusChem arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202202161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 73visibility views 73 download downloads 55 Powered bymore_vert ChemSusChem arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202202161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Martin Winter; Martin Winter; Tobias Placke; Ralf Wagner; Richard Schmuch; Gerhard Hörpel;It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion. Electrification is seen as the future of automotive industry, and deployment of electric vehicles largely depends on the development of rechargeable batteries. Here, the authors survey the state-of-the-art advances in active materials, electrolytes and cell chemistries for automotive batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0107-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0107-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:American Chemical Society (ACS) Tobias Placke; Martin Winter; Martin Winter; Olivier Guillon; Jesus Gonzalez-Julian; Jens Matthies Wrogemann; Lukas Haneke; Peer Bärmann;pmid: 34060318
MXenes have emerged as one of the most interesting material classes, owing to their outstanding physical and chemical properties enabling the application in vastly different fields such as electrochemical energy storage (EES). MXenes are commonly synthesized by the use of their parent phase, i.e., MAX phases, where "M" corresponds to a transition metal, "A" to a group IV element, and "X" to carbon and/or nitrogen. As MXenes display characteristic pseudocapacitive behaviors in EES technologies, their use as a high-power material can be useful for many battery-like applications. Here, a comprehensive study on the synthesis and characterization of morphologically different titanium-based MXenes, i.e., Ti3C2 and Ti2C, and their use for lithium-ion batteries is presented. First, the successful synthesis of large batches (≈1 kg) of the MAX phases Ti3AlC2 and Ti2AlC is shown, and the underlying materials are characterized mainly by focusing on their structural properties and phase purity. Second, multi- and few-layered MXenes are successfully synthesized and characterized, especially toward their ever-present surface groups, influencing the electrochemical behavior to a large extent. Especially multi- and few-layered Ti3C2 are achieved, exhibiting almost no oxidation and similar content of surface groups. These attributes enable the precise comparison of the electrochemical behavior between morphologically different MXenes. Since the preparation method for few-layered MXenes is adapted to process both active materials in a "classical" electrode paste processing method, a better comparison between both materials is possible by avoiding macroscopic differences. Therefore, in a final step, the aforementioned electrochemical performance is evaluated to decipher the impact of the morphology difference of the titanium-based MXenes. Most importantly, the delamination leads to an increased non-diffusion-limited contribution to the overall pseudocapacity by enhancing the electrolyte access to the redox-active sites.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c05889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c05889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Tobias Placke; Mirco Ruttert; Julián Martínez-Fernández; Martin Winter; Martin Winter; Joaquín Ramírez-Rico; Andreas Heckmann; Aurora Gomez-Martin;AbstractGraphitized carbon materials from biomass resources were successfully synthesized with an iron catalyst, and their electrochemical performance as anode materials for lithium‐ion batteries (LIBs) was investigated. Peak pyrolysis temperatures between 850 and 2000 °C were covered to study the effect of crystallinity and microstructural parameters on the anodic behavior, with a focus on the first‐cycle Coulombic efficiency, reversible specific capacity, and rate performance. In terms of capacity, results at the highest temperatures are comparable to those of commercially used synthetic graphite derived from a petroleum coke precursor at higher temperatures, and up to twice as much as that of uncatalyzed biomass‐derived carbons. The opportunity to graphitize low‐cost biomass resources at moderate temperatures through this one‐step environmentally friendly process, and the positive effects on the specific capacity, make it interesting to develop more sustainable graphite‐based anodes for LIBs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201800831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 download downloads 21 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201800831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, Germany, SpainPublisher:MDPI AG Funded by:EC | SeNSEEC| SeNSEAuthors: Reissig, Friederike; Ramirez-Rico, Joaquin; Placke, Tobias Johannes; Winter, Martin; +2 AuthorsReissig, Friederike; Ramirez-Rico, Joaquin; Placke, Tobias Johannes; Winter, Martin; Schmuch, Richard; Gomez-Martin, Aurora;handle: 10261/355506
To achieve a broader public acceptance for electric vehicles based on lithium-ion battery (LIB) technology, long driving ranges, low cost, and high safety are needed. A promising pathway to address these key parameters lies in the further improvement of Ni-rich cathode materials for LIB cells. Despite the higher achieved capacities and thus energy densities, there are major drawbacks in terms of capacity retention and thermal stability (of the charged cathode) which are crucial for customer acceptance and can be mitigated by protecting cathode particles. We studied the impact of surface modifications on cycle life and thermal stability of LiNi0.90Co0.05Mn0.05O2 layered oxide cathodes with WO3 by a simple sol–gel coating process. Several advanced analytical techniques such as low-energy ion scattering, differential scanning calorimetry, and high-temperature synchrotron X-ray powder diffraction of delithiated cathode materials, as well as charge/discharge cycling give significant insights into the impact of surface coverage of the coatings on mitigating degradation mechanisms. The results show that successful surface modifications of WO3 with a surface coverage of only 20% can prolong the cycle life of an LIB cell and play a crucial role in improving the thermal stability and, hence, the safety of LIBs.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/5/245/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/9/5/245/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9050245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 63 Powered bymore_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/5/245/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/9/5/245/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9050245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Tobias Placke; Arno Kwade; Christine Nowak; Martin Winter; Martin Winter; Wolfgang Haselrieder; Linus Froboese;In almost all state‐of‐the‐art lithium‐ion batteries, the negative electrode is made from graphite. For dual‐ion batteries (DIBs), graphite electrodes can even be used as negative and positive electrodes as the electrolyte provides both cations and anions for energy storage. As the amount of active material is very high in graphite electrodes, one of the main structure‐controlling parameters is its particle size distribution (PSD). Based on changes in the active material particle size and resulting changes in electrode structure, the corresponding cell characteristics like coulombic efficiency or power density are strongly affected. Herein, results for graphite positive electrodes manufactured with different PSDs of one typical commercial synthetic graphite are displayed. A high‐performance single‐wheel air classifier is used to create the differently distributed graphite particle fractions that do not vary in particle shapes for all fractions created. To gain a better understanding of the particle size impact on electrode properties, the electronic and mechanical properties, as well as the electrode structure, are investigated. The electrochemical performance of the Li metal/graphite system is correlated with structure properties influenced by PSD.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Tobias Placke; Olga Fromm; Guido Schmuelling; Martin Winter; Sascha Nowak; Hinrich-W. Meyer; Paul Meister; Sergej Rothermel;doi: 10.1039/c4ee01873g
We present highly promising results for the use of graphite as both electrodes in a “dual-carbon” cell. An ionic liquid-based electrolyte mixture allows stable and highly reversible ion intercalation/de-intercalation into/from the electrodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01873g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 342 citations 342 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01873g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Wiley Jens M. Wrogemann; Olga Fromm; Fabian Deckwirth; Kolja Beltrop; Andreas Heckmann; Martin Winter; Tobias Placke;AbstractCarbons are considered as anode active materials in potassium‐ion batteries (PIBs). Here, the correlation between material properties of disordered (non‐graphitic) and ordered graphitic carbons and their electrochemical performance in carbon||K metal cells is evaluated. First, carbons obtained from heat treatment of petroleum coke at temperatures from 800 to 2800 °C are analyzed regarding their microstructure and surface properties. Electrochemical performance metrics for K+ ion storage like specific capacity and Coulombic efficiency (CEff) are correlated with surface area, non‐basal planes and microstructure properties, and compared to Li+ ion storage. For disordered carbons, the specific capacity can be clearly correlated with the defect surface area. For highly ordered graphitic carbons, the degree of graphitization strongly determines the specific capacity. The initial CEff of graphitic carbons shows a strong correlation with basal and non‐basal planes. Second, kinetic limitations of ordered graphitic carbons are re‐evaluated by analyzing commercial graphites regarding particle size and surface properties. A clear correlation between particle size, surface area and well‐known challenges of graphitic carbons in terms of low‐rate capability and voltage hysteresis is observed. This work emphasizes the importance of bulk and surface material properties for K+ ion storage and gives important insights for future particle design of promising carbon anodes for PIB cells.
Batteries & Supercap... arrow_drop_down Batteries & SupercapsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202200045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries & Supercap... arrow_drop_down Batteries & SupercapsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202200045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:MDPI AG Florian Holtstiege; Peer Bärmann; Roman Nölle; Martin Winter; Tobias Placke;In order to meet the sophisticated demands for large-scale applications such as electro-mobility, next generation energy storage technologies require advanced electrode active materials with enhanced gravimetric and volumetric capacities to achieve increased gravimetric energy and volumetric energy densities. However, most of these materials suffer from high 1st cycle active lithium losses, e.g., caused by solid electrolyte interphase (SEI) formation, which in turn hinder their broad commercial use so far. In general, the loss of active lithium permanently decreases the available energy by the consumption of lithium from the positive electrode material. Pre-lithiation is considered as a highly appealing technique to compensate for active lithium losses and, therefore, to increase the practical energy density. Various pre-lithiation techniques have been evaluated so far, including electrochemical and chemical pre-lithiation, pre-lithiation with the help of additives or the pre-lithiation by direct contact to lithium metal. In this review article, we will give a comprehensive overview about the various concepts for pre lithiation and controversially discuss their advantages and challenges. Furthermore, we will critically discuss possible effects on the cell performance and stability and assess the techniques with regard to their possible commercial exploration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 294 citations 294 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Authors: Wei Liu; Tobias Placke; K.T. Chau;handle: 10397/107849
Popularization of electric vehicles (EVs) is an effective solution to promote carbon neutrality, thus combating the climate crisis. Advances in EV batteries and battery management interrelate with government policies and user experiences closely. This article reviews the evolutions and challenges of (i) state-of-the-art battery technologies and (ii) state-of-the-art battery management technologies for hybrid and pure EVs. The key is to reveal the major features, pros and cons, new technological breakthroughs, future challenges, and opportunities for advancing electric mobility. This critical review envisions the development trends of battery chemistry technologies, technologies regarding batteries, and technologies replacing batteries. Wherein, lithium-ion batteries, lithium-metal batteries (such as solid state batteries), and technologies beyond lithium (‘post-lithium’) will be actively explored in the next decades. Meanwhile, the data-driven electrothermal model is promising and identified with an impressive performance. Technologies of move-and-charge and wireless power drive will help alleviate the overdependence of batteries. Finally, future high-energy batteries and their management technologies will actively embrace the information and energy internet for data and energy sharing.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/107849Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 429 citations 429 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/107849Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 28 Aug 2023 GermanyPublisher:Wiley Funded by:EC | SeNSEEC| SeNSEMarcel Heidbüchel; Thorsten Schultz; Tobias Placke; Martin Winter; Norbert Koch; Richard Schmuch; Aurora Gomez‐Martin;AbstractAqueous processing of Ni‐rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state‐of‐the‐art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni‐rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi0.8Co0.1Mn0.1O2 (NCM811) by the addition of lithium sulfate (Li2SO4) during electrode paste dispersion. The aqueously processed electrodes retained 80 % of their initial capacity after 400 cycles in NCM811||graphite full cells, while electrodes processed without the addition of Li2SO4 reached 80 % of their capacity after only 200 cycles. Furthermore, with regard to electrochemical performance, aqueously processed electrodes using carbon‐coated Al current collector outperformed reference electrodes based on state‐of‐the‐art production processes involving N‐methyl‐2‐pyrrolidone as processing solvent and fluorinated binders. The positive impact on cycle life by the addition of Li2SO4 stemmed from a formed sulfate coating as well as different surface species, protecting the NCM811 surface against degradation. Results reported herein open a new avenue for the processing of Ni‐rich NCM electrodes using more sustainable aqueous routes.
ChemSusChem arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202202161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 73visibility views 73 download downloads 55 Powered bymore_vert ChemSusChem arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202202161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Martin Winter; Martin Winter; Tobias Placke; Ralf Wagner; Richard Schmuch; Gerhard Hörpel;It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion. Electrification is seen as the future of automotive industry, and deployment of electric vehicles largely depends on the development of rechargeable batteries. Here, the authors survey the state-of-the-art advances in active materials, electrolytes and cell chemistries for automotive batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0107-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0107-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:American Chemical Society (ACS) Tobias Placke; Martin Winter; Martin Winter; Olivier Guillon; Jesus Gonzalez-Julian; Jens Matthies Wrogemann; Lukas Haneke; Peer Bärmann;pmid: 34060318
MXenes have emerged as one of the most interesting material classes, owing to their outstanding physical and chemical properties enabling the application in vastly different fields such as electrochemical energy storage (EES). MXenes are commonly synthesized by the use of their parent phase, i.e., MAX phases, where "M" corresponds to a transition metal, "A" to a group IV element, and "X" to carbon and/or nitrogen. As MXenes display characteristic pseudocapacitive behaviors in EES technologies, their use as a high-power material can be useful for many battery-like applications. Here, a comprehensive study on the synthesis and characterization of morphologically different titanium-based MXenes, i.e., Ti3C2 and Ti2C, and their use for lithium-ion batteries is presented. First, the successful synthesis of large batches (≈1 kg) of the MAX phases Ti3AlC2 and Ti2AlC is shown, and the underlying materials are characterized mainly by focusing on their structural properties and phase purity. Second, multi- and few-layered MXenes are successfully synthesized and characterized, especially toward their ever-present surface groups, influencing the electrochemical behavior to a large extent. Especially multi- and few-layered Ti3C2 are achieved, exhibiting almost no oxidation and similar content of surface groups. These attributes enable the precise comparison of the electrochemical behavior between morphologically different MXenes. Since the preparation method for few-layered MXenes is adapted to process both active materials in a "classical" electrode paste processing method, a better comparison between both materials is possible by avoiding macroscopic differences. Therefore, in a final step, the aforementioned electrochemical performance is evaluated to decipher the impact of the morphology difference of the titanium-based MXenes. Most importantly, the delamination leads to an increased non-diffusion-limited contribution to the overall pseudocapacity by enhancing the electrolyte access to the redox-active sites.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c05889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c05889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu