
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte

Authors: Tobias Placke; Olga Fromm; Guido Schmuelling; Martin Winter; Sascha Nowak; Hinrich-W. Meyer; Paul Meister; +1 Authors
Tobias Placke; Olga Fromm; Guido Schmuelling; Martin Winter; Sascha Nowak; Hinrich-W. Meyer; Paul Meister; Sergej Rothermel;
doi: 10.1039/c4ee01873g
Abstract
We present highly promising results for the use of graphite as both electrodes in a “dual-carbon” cell. An ionic liquid-based electrolyte mixture allows stable and highly reversible ion intercalation/de-intercalation into/from the electrodes.
Related Organizations
- University of Münster Germany
- Romanian Academy Romania
- Romanian Academy Romania
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).342 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
342
Top 0.1%
Top 1%
Top 1%
hybrid
Beta
Fields of Science (4) View all
Fields of Science
Related to Research communities
Energy Research