- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Saudi ArabiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Taieb, Souhaib Ben; Huser, Raphaël; Hyndman, Rob J.; Genton, Marc G.;handle: 10754/622549
Smart electricity meters are currently deployed in millions of households to collect detailed individual electricity consumption data. Compared with traditional electricity data based on aggregated consumption, smart meter data are much more volatile and less predictable. There is a need within the energy industry for probabilistic forecasts of household electricity consumption to quantify the uncertainty of future electricity demand in order to undertake appropriate planning of generation and distribution. We propose to estimate an additive quantile regression model for a set of quantiles of the future distribution using a boosting procedure. By doing so, we can benefit from flexible and interpretable models, which include an automatic variable selection. We compare our approach with three benchmark methods on both aggregated and disaggregated scales using a smart meter data set collected from 3639 households in Ireland at 30-min intervals over a period of 1.5 years. The empirical results demonstrate that our approach based on quantile regression provides better forecast accuracy for disaggregated demand, while the traditional approach based on a normality assumption (possibly after an appropriate Box-Cox transformation) is a better approximation for aggregated demand. These results are particularly useful since more energy data will become available at the disaggregated level in the future.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2527820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu149 citations 149 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2527820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Godahewa, Rakshitha; Bergmeir, Christoph; Webb, Geoff; Abolghasemi, Mahdi; Hyndman, Rob; Montero-Manso, Pablo;This dataset contains very long minutely time series representing the wind power production of 339 wind farms in Australia. It was downloaded from the Australian Energy Market Operator (AEMO) online platform. {"references": ["Australian Energy Market Operator, 2020. https://aemo.com.au/", "Australian Energy Market Operator, 2020. Market Data NemWeb, http://www.nemweb.com.au/"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4654909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4654909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2011Publisher:IEEE Authors: Shu Fan; Rob J. Hyndman;Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2011.6039207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2011.6039207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2010Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Rob J Hyndman; Shu Fan;Long-term electricity demand forecasting plays an important role in planning for future generation facilities and transmission augmentation. In a long-term context, planners must adopt a probabilistic view of potential peak demand levels. Therefore density forecasts (providing estimates of the full probability distributions of the possible future values of the demand) are more helpful than point forecasts, and are necessary for utilities to evaluate and hedge the financial risk accrued by demand variability and forecasting uncertainty. This paper proposes a new methodology to forecast the density of long-term peak electricity demand. Peak electricity demand in a given season is subject to a range of uncertainties, including underlying population growth, changing technology, economic conditions, prevailing weather conditions (and the timing of those conditions), as well as the general randomness inherent in individual usage. It is also subject to some known calendar effects due to the time of day, day of week, time of year, and public holidays. A comprehensive forecasting solution is described in this paper. First, semi-parametric additive models are used to estimate the relationships between demand and the driver variables, including temperatures, calendar effects and some demographic and economic variables. Then the demand distributions are forecasted by using a mixture of temperature simulation, assumed future economic scenarios, and residual bootstrapping. The temperature simulation is implemented through a new seasonal bootstrapping method with variable blocks. The proposed methodology has been used to forecast the probability distribution of annual and weekly peak electricity demand for South Australia since 2007. The performance of the methodology is evaluated by comparing the forecast results with the actual demand of the summer 2007-2008.
Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2010 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2036017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 274 citations 274 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2010 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2036017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2011Publisher:Elsevier BV Authors: Fan, Shu; Hyndman, Rob;In this paper, the price elasticity of electricity demand, representing the sensitivity of customer demand to the price of electricity, has been estimated for South Australia. We first undertake a review of the scholarly literature regarding electricity price elasticity for different regions and systems. Then we perform an empirical evaluation of the historic South Australian price elasticity, focussing on the relationship between price and demand quantiles at each half-hour of the day. This work attempts to determine whether there is any variation in price sensitivity with the time of day or quantile, and to estimate the form of any relationship that might exist in South Australia.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu167 citations 167 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Godahewa, Rakshitha; Bergmeir, Christoph; Webb, Geoff; Abolghasemi, Mahdi; Hyndman, Rob; Montero-Manso, Pablo;This dataset contains very long minutely time series representing the wind power production of 339 wind farms in Australia. It was downloaded from the Australian Energy Market Operator (AEMO) online platform. The original dataset contains missing values and they have been replaced by zeros. {"references": ["Australian Energy Market Operator, 2020. https://aemo.com.au/", "Australian Energy Market Operator, 2020. Market Data NemWeb, http://www.nemweb.com.au/"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3996561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 107visibility views 107 download downloads 11,346 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3996561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2012Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Fan, Shu; Hyndman, Rob;Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.
Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2012 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2011.2162082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu375 citations 375 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2012 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2011.2162082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: Rob J. Hyndman; Shu Fan;Load forecasting is a key task for the effective operation and planning of power systems. It is concerned with the prediction of hourly, daily, weekly, and annual values of the system demand and peak demand. Such forecasts are sometimes categorized as short-term, medium-term and long-term forecasts, depending on the time horizon. Long-term load forecasting is an integral process in scheduling the construction of new generation facilities and in the development of transmission and distribution systems, while short-term forecasting provides essential information for economic dispatch, unit commitment and electricity market. A comprehensive forecasting solution developed by Monash University is described in this paper. The semi-parametric additive models based forecasting system has been used to forecast the electricity demands for regions in the National Electricity Market. The forecasting system covers the time horizon from hours ahead up to years ahead, and provides both point forecasts (i.e., forecasts of the mean or median of the future demand distribution), and density forecasts (providing estimates of the full probability distributions of the possible future values of the demand). The performance of the methodology have been validated through the developments of the past years, and the forecasting system is currently used by the Australian Energy Market Operator (AEMO) for system planning and schedule.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6345304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6345304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Shu Fan; Hamidreza Zareipour; Pierre Pinson; Tao Hong; Alberto Troccoli; Rob J. Hyndman;The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged fundamentally. In this competitive and dynamic environment, many decision-making processes rely on probabilistic forecasts to quantify the uncertain future. Although most of the papers in the energy forecasting literature focus on point or single-valued forecasts, the research interest in probabilistic energy forecasting research has taken off rapidly in recent years. In this paper, we summarize the recent research progress on probabilistic energy forecasting. A major portion of the paper is devoted to introducing the Global Energy Forecasting Competition 2014 (GEFCom2014), a probabilistic energy forecasting competition with four tracks on load, price, wind and solar forecasting, which attracted 581 participants from 61 countries. We conclude the paper with 12 predictions for the next decade of energy forecasting.
International Journa... arrow_drop_down International Journal of ForecastingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2016.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu713 citations 713 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ForecastingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2016.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2006Publisher:Elsevier BV Authors: Rob J. Hyndman; Anne B. Koehler;We discuss and compare measures of accuracy of univariate time series forecasts. The methods used in the M-competition and the M3-competition, and many of the measures recommended by previous authors on this topic, are found to be inadequate, and many of them are degenerate in commonly occurring situations. Instead, we propose that the mean absolute scaled error become the standard measure for comparing forecast accuracy across multiple time series.
Research Papers in E... arrow_drop_down International Journal of ForecastingArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2006.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4K citations 3,616 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down International Journal of ForecastingArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2006.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Saudi ArabiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Taieb, Souhaib Ben; Huser, Raphaël; Hyndman, Rob J.; Genton, Marc G.;handle: 10754/622549
Smart electricity meters are currently deployed in millions of households to collect detailed individual electricity consumption data. Compared with traditional electricity data based on aggregated consumption, smart meter data are much more volatile and less predictable. There is a need within the energy industry for probabilistic forecasts of household electricity consumption to quantify the uncertainty of future electricity demand in order to undertake appropriate planning of generation and distribution. We propose to estimate an additive quantile regression model for a set of quantiles of the future distribution using a boosting procedure. By doing so, we can benefit from flexible and interpretable models, which include an automatic variable selection. We compare our approach with three benchmark methods on both aggregated and disaggregated scales using a smart meter data set collected from 3639 households in Ireland at 30-min intervals over a period of 1.5 years. The empirical results demonstrate that our approach based on quantile regression provides better forecast accuracy for disaggregated demand, while the traditional approach based on a normality assumption (possibly after an appropriate Box-Cox transformation) is a better approximation for aggregated demand. These results are particularly useful since more energy data will become available at the disaggregated level in the future.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2527820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu149 citations 149 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2527820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Godahewa, Rakshitha; Bergmeir, Christoph; Webb, Geoff; Abolghasemi, Mahdi; Hyndman, Rob; Montero-Manso, Pablo;This dataset contains very long minutely time series representing the wind power production of 339 wind farms in Australia. It was downloaded from the Australian Energy Market Operator (AEMO) online platform. {"references": ["Australian Energy Market Operator, 2020. https://aemo.com.au/", "Australian Energy Market Operator, 2020. Market Data NemWeb, http://www.nemweb.com.au/"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4654909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4654909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2011Publisher:IEEE Authors: Shu Fan; Rob J. Hyndman;Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2011.6039207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2011.6039207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2010Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Rob J Hyndman; Shu Fan;Long-term electricity demand forecasting plays an important role in planning for future generation facilities and transmission augmentation. In a long-term context, planners must adopt a probabilistic view of potential peak demand levels. Therefore density forecasts (providing estimates of the full probability distributions of the possible future values of the demand) are more helpful than point forecasts, and are necessary for utilities to evaluate and hedge the financial risk accrued by demand variability and forecasting uncertainty. This paper proposes a new methodology to forecast the density of long-term peak electricity demand. Peak electricity demand in a given season is subject to a range of uncertainties, including underlying population growth, changing technology, economic conditions, prevailing weather conditions (and the timing of those conditions), as well as the general randomness inherent in individual usage. It is also subject to some known calendar effects due to the time of day, day of week, time of year, and public holidays. A comprehensive forecasting solution is described in this paper. First, semi-parametric additive models are used to estimate the relationships between demand and the driver variables, including temperatures, calendar effects and some demographic and economic variables. Then the demand distributions are forecasted by using a mixture of temperature simulation, assumed future economic scenarios, and residual bootstrapping. The temperature simulation is implemented through a new seasonal bootstrapping method with variable blocks. The proposed methodology has been used to forecast the probability distribution of annual and weekly peak electricity demand for South Australia since 2007. The performance of the methodology is evaluated by comparing the forecast results with the actual demand of the summer 2007-2008.
Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2010 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2036017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 274 citations 274 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2010 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2036017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2011Publisher:Elsevier BV Authors: Fan, Shu; Hyndman, Rob;In this paper, the price elasticity of electricity demand, representing the sensitivity of customer demand to the price of electricity, has been estimated for South Australia. We first undertake a review of the scholarly literature regarding electricity price elasticity for different regions and systems. Then we perform an empirical evaluation of the historic South Australian price elasticity, focussing on the relationship between price and demand quantiles at each half-hour of the day. This work attempts to determine whether there is any variation in price sensitivity with the time of day or quantile, and to estimate the form of any relationship that might exist in South Australia.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu167 citations 167 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Godahewa, Rakshitha; Bergmeir, Christoph; Webb, Geoff; Abolghasemi, Mahdi; Hyndman, Rob; Montero-Manso, Pablo;This dataset contains very long minutely time series representing the wind power production of 339 wind farms in Australia. It was downloaded from the Australian Energy Market Operator (AEMO) online platform. The original dataset contains missing values and they have been replaced by zeros. {"references": ["Australian Energy Market Operator, 2020. https://aemo.com.au/", "Australian Energy Market Operator, 2020. Market Data NemWeb, http://www.nemweb.com.au/"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3996561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 107visibility views 107 download downloads 11,346 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3996561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2012Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Fan, Shu; Hyndman, Rob;Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.
Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2012 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2011.2162082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu375 citations 375 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2012 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2011.2162082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: Rob J. Hyndman; Shu Fan;Load forecasting is a key task for the effective operation and planning of power systems. It is concerned with the prediction of hourly, daily, weekly, and annual values of the system demand and peak demand. Such forecasts are sometimes categorized as short-term, medium-term and long-term forecasts, depending on the time horizon. Long-term load forecasting is an integral process in scheduling the construction of new generation facilities and in the development of transmission and distribution systems, while short-term forecasting provides essential information for economic dispatch, unit commitment and electricity market. A comprehensive forecasting solution developed by Monash University is described in this paper. The semi-parametric additive models based forecasting system has been used to forecast the electricity demands for regions in the National Electricity Market. The forecasting system covers the time horizon from hours ahead up to years ahead, and provides both point forecasts (i.e., forecasts of the mean or median of the future demand distribution), and density forecasts (providing estimates of the full probability distributions of the possible future values of the demand). The performance of the methodology have been validated through the developments of the past years, and the forecasting system is currently used by the Australian Energy Market Operator (AEMO) for system planning and schedule.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6345304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6345304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Shu Fan; Hamidreza Zareipour; Pierre Pinson; Tao Hong; Alberto Troccoli; Rob J. Hyndman;The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged fundamentally. In this competitive and dynamic environment, many decision-making processes rely on probabilistic forecasts to quantify the uncertain future. Although most of the papers in the energy forecasting literature focus on point or single-valued forecasts, the research interest in probabilistic energy forecasting research has taken off rapidly in recent years. In this paper, we summarize the recent research progress on probabilistic energy forecasting. A major portion of the paper is devoted to introducing the Global Energy Forecasting Competition 2014 (GEFCom2014), a probabilistic energy forecasting competition with four tracks on load, price, wind and solar forecasting, which attracted 581 participants from 61 countries. We conclude the paper with 12 predictions for the next decade of energy forecasting.
International Journa... arrow_drop_down International Journal of ForecastingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2016.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu713 citations 713 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ForecastingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2016.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2006Publisher:Elsevier BV Authors: Rob J. Hyndman; Anne B. Koehler;We discuss and compare measures of accuracy of univariate time series forecasts. The methods used in the M-competition and the M3-competition, and many of the measures recommended by previous authors on this topic, are found to be inadequate, and many of them are degenerate in commonly occurring situations. Instead, we propose that the mean absolute scaled error become the standard measure for comparing forecast accuracy across multiple time series.
Research Papers in E... arrow_drop_down International Journal of ForecastingArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2006.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4K citations 3,616 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down International Journal of ForecastingArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijforecast.2006.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu