- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:HAL CCSD Funded by:UKRI | UK Status, Change and Pro..., EC | GUARDEN, EC | MAMBO +1 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,EC| GUARDEN ,EC| MAMBO ,ANR| Pl@ntAgroEcoPorcher, Emmanuelle; Bonnet, Pierre; Damgaard, Christian; de Frenne, Pieter; Deguines, Nicolas; Ehlers, Bodil; Frei, Jérôme; García, María; Gros, Clément; Jandt, Ute; Joly, Alexis; Martin, Gabrielle; Michez, Denis; Pescott, Oliver; Roth, Tobias; Waller, Donald;Meeting report on the symposium ‘New solutions to monitor plants, pollinators and their interactions in a changing world’, held at Collège de France and Muséum national d'Histoire naturelle, Paris, France, 23–24 May 2024 International audience
HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:HAL CCSD Funded by:UKRI | UK Status, Change and Pro..., EC | GUARDEN, EC | MAMBO +1 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,EC| GUARDEN ,EC| MAMBO ,ANR| Pl@ntAgroEcoPorcher, Emmanuelle; Bonnet, Pierre; Damgaard, Christian; de Frenne, Pieter; Deguines, Nicolas; Ehlers, Bodil; Frei, Jérôme; García, María; Gros, Clément; Jandt, Ute; Joly, Alexis; Martin, Gabrielle; Michez, Denis; Pescott, Oliver; Roth, Tobias; Waller, Donald;Meeting report on the symposium ‘New solutions to monitor plants, pollinators and their interactions in a changing world’, held at Collège de France and Muséum national d'Histoire naturelle, Paris, France, 23–24 May 2024 International audience
HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, FrancePublisher:MDPI AG Natalie L. R. Love; Pierre Bonnet; Hervé Goëau; Alexis Joly; Susan J. Mazer;Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb, Streptanthus tortuosus, were scored both manually by human observers and by a mask R-CNN object detection model to (1) evaluate the concordance between ML and manually-derived phenological data and (2) determine whether ML-derived data can be used to reliably assess phenological patterns. The ML model generally underestimated the number of reproductive structures present on each specimen; however, when these counts were used to provide a quantitative estimate of the phenological stage of plants on a given sheet (i.e., the phenological index or PI), the ML and manually-derived PI’s were highly concordant. Moreover, herbarium specimen age had no effect on the estimated PI of a given sheet. Finally, including ML-derived PIs as predictor variables in phenological models produced estimates of the phenological sensitivity of this species to climate, temporal shifts in flowering time, and the rate of phenological progression that are indistinguishable from those produced by models based on data provided by human observers. This study demonstrates that phenological data extracted using machine learning can be used reliably to estimate the phenological stage of herbarium specimens and to detect phenological patterns.
Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, FrancePublisher:MDPI AG Natalie L. R. Love; Pierre Bonnet; Hervé Goëau; Alexis Joly; Susan J. Mazer;Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb, Streptanthus tortuosus, were scored both manually by human observers and by a mask R-CNN object detection model to (1) evaluate the concordance between ML and manually-derived phenological data and (2) determine whether ML-derived data can be used to reliably assess phenological patterns. The ML model generally underestimated the number of reproductive structures present on each specimen; however, when these counts were used to provide a quantitative estimate of the phenological stage of plants on a given sheet (i.e., the phenological index or PI), the ML and manually-derived PI’s were highly concordant. Moreover, herbarium specimen age had no effect on the estimated PI of a given sheet. Finally, including ML-derived PIs as predictor variables in phenological models produced estimates of the phenological sensitivity of this species to climate, temporal shifts in flowering time, and the rate of phenological progression that are indistinguishable from those produced by models based on data provided by human observers. This study demonstrates that phenological data extracted using machine learning can be used reliably to estimate the phenological stage of herbarium specimens and to detect phenological patterns.
Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 France, United StatesPublisher:Oxford University Press (OUP) Pearson, Katelin; Nelson, Gil; Aronson, Myla; Bonnet, Pierre; Brenskelle, Laura; Davis, Charles; Denny, Ellen; Ellwood, Elizabeth; Goëau, Hervé; Heberling, J Mason; Joly, Alexis; Lorieul, Titouan; Mazer, Susan; Meineke, Emily; Stucky, Brian; Sweeney, Patrick; White, Alexander; Soltis, Pamela;AbstractMachine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 France, United StatesPublisher:Oxford University Press (OUP) Pearson, Katelin; Nelson, Gil; Aronson, Myla; Bonnet, Pierre; Brenskelle, Laura; Davis, Charles; Denny, Ellen; Ellwood, Elizabeth; Goëau, Hervé; Heberling, J Mason; Joly, Alexis; Lorieul, Titouan; Mazer, Susan; Meineke, Emily; Stucky, Brian; Sweeney, Patrick; White, Alexander; Soltis, Pamela;AbstractMachine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Greece, Spain, FrancePublisher:MDPI AG Funded by:EC | MICS, EC | COS4CLOUDEC| MICS ,EC| COS4CLOUDSasha Marie Woods; Maria Daskolia; Alexis Joly; Pierre Bonnet; Karen Soacha; Sonia Liñan; Tim Woods; Jaume Piera; Luigi Ceccaroni;doi: 10.3390/su14074078
handle: 10261/266244
There is a growing acknowledgement that citizen observatories, and other forms of citizen-generated data, have a significant role in tracking progress towards the Sustainable Development Goals. This is evident in the increasing number of Sustainable Development Goals’ indicators for which such data are already being used and in the high-level recognition of the potential role that citizen science can play. In this article, we argue that networks of citizen observatories will help realise this potential. Drawing on the Cos4Cloud project as an example, we highlight how such networks can make citizen-generated data more interoperable and accessible (among other qualities), increasing their impact and usefulness. Furthermore, we highlight other, perhaps overlooked, advantages of citizen observatories and citizen-generated data: educating and informing citizen scientists about the Sustainable Development Goals and co-creating solutions to the global challenges they address.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 128 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Greece, Spain, FrancePublisher:MDPI AG Funded by:EC | MICS, EC | COS4CLOUDEC| MICS ,EC| COS4CLOUDSasha Marie Woods; Maria Daskolia; Alexis Joly; Pierre Bonnet; Karen Soacha; Sonia Liñan; Tim Woods; Jaume Piera; Luigi Ceccaroni;doi: 10.3390/su14074078
handle: 10261/266244
There is a growing acknowledgement that citizen observatories, and other forms of citizen-generated data, have a significant role in tracking progress towards the Sustainable Development Goals. This is evident in the increasing number of Sustainable Development Goals’ indicators for which such data are already being used and in the high-level recognition of the potential role that citizen science can play. In this article, we argue that networks of citizen observatories will help realise this potential. Drawing on the Cos4Cloud project as an example, we highlight how such networks can make citizen-generated data more interoperable and accessible (among other qualities), increasing their impact and usefulness. Furthermore, we highlight other, perhaps overlooked, advantages of citizen observatories and citizen-generated data: educating and informing citizen scientists about the Sustainable Development Goals and co-creating solutions to the global challenges they address.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 128 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:HAL CCSD Funded by:UKRI | UK Status, Change and Pro..., EC | GUARDEN, EC | MAMBO +1 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,EC| GUARDEN ,EC| MAMBO ,ANR| Pl@ntAgroEcoPorcher, Emmanuelle; Bonnet, Pierre; Damgaard, Christian; de Frenne, Pieter; Deguines, Nicolas; Ehlers, Bodil; Frei, Jérôme; García, María; Gros, Clément; Jandt, Ute; Joly, Alexis; Martin, Gabrielle; Michez, Denis; Pescott, Oliver; Roth, Tobias; Waller, Donald;Meeting report on the symposium ‘New solutions to monitor plants, pollinators and their interactions in a changing world’, held at Collège de France and Muséum national d'Histoire naturelle, Paris, France, 23–24 May 2024 International audience
HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:HAL CCSD Funded by:UKRI | UK Status, Change and Pro..., EC | GUARDEN, EC | MAMBO +1 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,EC| GUARDEN ,EC| MAMBO ,ANR| Pl@ntAgroEcoPorcher, Emmanuelle; Bonnet, Pierre; Damgaard, Christian; de Frenne, Pieter; Deguines, Nicolas; Ehlers, Bodil; Frei, Jérôme; García, María; Gros, Clément; Jandt, Ute; Joly, Alexis; Martin, Gabrielle; Michez, Denis; Pescott, Oliver; Roth, Tobias; Waller, Donald;Meeting report on the symposium ‘New solutions to monitor plants, pollinators and their interactions in a changing world’, held at Collège de France and Muséum national d'Histoire naturelle, Paris, France, 23–24 May 2024 International audience
HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL-IRD arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2024Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d17377810550101839b21ccedb514e8d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, FrancePublisher:MDPI AG Natalie L. R. Love; Pierre Bonnet; Hervé Goëau; Alexis Joly; Susan J. Mazer;Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb, Streptanthus tortuosus, were scored both manually by human observers and by a mask R-CNN object detection model to (1) evaluate the concordance between ML and manually-derived phenological data and (2) determine whether ML-derived data can be used to reliably assess phenological patterns. The ML model generally underestimated the number of reproductive structures present on each specimen; however, when these counts were used to provide a quantitative estimate of the phenological stage of plants on a given sheet (i.e., the phenological index or PI), the ML and manually-derived PI’s were highly concordant. Moreover, herbarium specimen age had no effect on the estimated PI of a given sheet. Finally, including ML-derived PIs as predictor variables in phenological models produced estimates of the phenological sensitivity of this species to climate, temporal shifts in flowering time, and the rate of phenological progression that are indistinguishable from those produced by models based on data provided by human observers. This study demonstrates that phenological data extracted using machine learning can be used reliably to estimate the phenological stage of herbarium specimens and to detect phenological patterns.
Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, FrancePublisher:MDPI AG Natalie L. R. Love; Pierre Bonnet; Hervé Goëau; Alexis Joly; Susan J. Mazer;Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb, Streptanthus tortuosus, were scored both manually by human observers and by a mask R-CNN object detection model to (1) evaluate the concordance between ML and manually-derived phenological data and (2) determine whether ML-derived data can be used to reliably assess phenological patterns. The ML model generally underestimated the number of reproductive structures present on each specimen; however, when these counts were used to provide a quantitative estimate of the phenological stage of plants on a given sheet (i.e., the phenological index or PI), the ML and manually-derived PI’s were highly concordant. Moreover, herbarium specimen age had no effect on the estimated PI of a given sheet. Finally, including ML-derived PIs as predictor variables in phenological models produced estimates of the phenological sensitivity of this species to climate, temporal shifts in flowering time, and the rate of phenological progression that are indistinguishable from those produced by models based on data provided by human observers. This study demonstrates that phenological data extracted using machine learning can be used reliably to estimate the phenological stage of herbarium specimens and to detect phenological patterns.
Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plants arrow_drop_down PlantsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2223-7747/10/11/2471/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/03n7n0nhData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://inria.hal.science/hal-03454183Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10112471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 France, United StatesPublisher:Oxford University Press (OUP) Pearson, Katelin; Nelson, Gil; Aronson, Myla; Bonnet, Pierre; Brenskelle, Laura; Davis, Charles; Denny, Ellen; Ellwood, Elizabeth; Goëau, Hervé; Heberling, J Mason; Joly, Alexis; Lorieul, Titouan; Mazer, Susan; Meineke, Emily; Stucky, Brian; Sweeney, Patrick; White, Alexander; Soltis, Pamela;AbstractMachine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 France, United StatesPublisher:Oxford University Press (OUP) Pearson, Katelin; Nelson, Gil; Aronson, Myla; Bonnet, Pierre; Brenskelle, Laura; Davis, Charles; Denny, Ellen; Ellwood, Elizabeth; Goëau, Hervé; Heberling, J Mason; Joly, Alexis; Lorieul, Titouan; Mazer, Susan; Meineke, Emily; Stucky, Brian; Sweeney, Patrick; White, Alexander; Soltis, Pamela;AbstractMachine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.umontpellier.fr/hal-02573627Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3nw8s4d0Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2020License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biaa044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Greece, Spain, FrancePublisher:MDPI AG Funded by:EC | MICS, EC | COS4CLOUDEC| MICS ,EC| COS4CLOUDSasha Marie Woods; Maria Daskolia; Alexis Joly; Pierre Bonnet; Karen Soacha; Sonia Liñan; Tim Woods; Jaume Piera; Luigi Ceccaroni;doi: 10.3390/su14074078
handle: 10261/266244
There is a growing acknowledgement that citizen observatories, and other forms of citizen-generated data, have a significant role in tracking progress towards the Sustainable Development Goals. This is evident in the increasing number of Sustainable Development Goals’ indicators for which such data are already being used and in the high-level recognition of the potential role that citizen science can play. In this article, we argue that networks of citizen observatories will help realise this potential. Drawing on the Cos4Cloud project as an example, we highlight how such networks can make citizen-generated data more interoperable and accessible (among other qualities), increasing their impact and usefulness. Furthermore, we highlight other, perhaps overlooked, advantages of citizen observatories and citizen-generated data: educating and informing citizen scientists about the Sustainable Development Goals and co-creating solutions to the global challenges they address.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 128 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Greece, Spain, FrancePublisher:MDPI AG Funded by:EC | MICS, EC | COS4CLOUDEC| MICS ,EC| COS4CLOUDSasha Marie Woods; Maria Daskolia; Alexis Joly; Pierre Bonnet; Karen Soacha; Sonia Liñan; Tim Woods; Jaume Piera; Luigi Ceccaroni;doi: 10.3390/su14074078
handle: 10261/266244
There is a growing acknowledgement that citizen observatories, and other forms of citizen-generated data, have a significant role in tracking progress towards the Sustainable Development Goals. This is evident in the increasing number of Sustainable Development Goals’ indicators for which such data are already being used and in the high-level recognition of the potential role that citizen science can play. In this article, we argue that networks of citizen observatories will help realise this potential. Drawing on the Cos4Cloud project as an example, we highlight how such networks can make citizen-generated data more interoperable and accessible (among other qualities), increasing their impact and usefulness. Furthermore, we highlight other, perhaps overlooked, advantages of citizen observatories and citizen-generated data: educating and informing citizen scientists about the Sustainable Development Goals and co-creating solutions to the global challenges they address.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 128 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/14/7/4078/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03658842Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2022License: CC BYData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu