
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research

AbstractMachine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
- Département Sciences sociales, agriculture et alimentation, espace et environnement France
- Yale Peabody Museum United States
- University of California System United States
- French National Centre for Scientific Research France
- UNIVERSITE DE MONTPELLIER 1 France
[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, herbier, [SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy, Biologist's Toolbox, [SDV.EE.ECO] Life Sciences [q-bio]/Ecology, environment/Ecosystems, Climate change, apprentissage machine, biodiversity, changement climatique, collecte de données, Ecology, U10 - Informatique, mathématiques et statistiques, http://aims.fao.org/aos/agrovoc/c_5957, http://aims.fao.org/aos/agrovoc/c_49834, Phylogenetics and taxonomy, http://aims.fao.org/aos/agrovoc/c_5959, Biodiversity, Biological Sciences, [SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics, phénologie, climate change, machine learning, C30 - Documentation et information, Phenology, http://aims.fao.org/aos/agrovoc/c_2128, environment/Ecosystems, http://aims.fao.org/aos/agrovoc/c_10289, F40 - Écologie végétale, traitement des données, phenology, 333, [SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics, [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems, Machine learning, [SDV.BID.SPT] Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_3565, 580, collection botanique, stade de développement végétal, deep learning, Deep learning, traitement numérique d'image, http://aims.fao.org/aos/agrovoc/c_9000033, Climate Action, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, http://aims.fao.org/aos/agrovoc/c_5774, [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, Environmental Sciences
[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, herbier, [SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy, Biologist's Toolbox, [SDV.EE.ECO] Life Sciences [q-bio]/Ecology, environment/Ecosystems, Climate change, apprentissage machine, biodiversity, changement climatique, collecte de données, Ecology, U10 - Informatique, mathématiques et statistiques, http://aims.fao.org/aos/agrovoc/c_5957, http://aims.fao.org/aos/agrovoc/c_49834, Phylogenetics and taxonomy, http://aims.fao.org/aos/agrovoc/c_5959, Biodiversity, Biological Sciences, [SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics, phénologie, climate change, machine learning, C30 - Documentation et information, Phenology, http://aims.fao.org/aos/agrovoc/c_2128, environment/Ecosystems, http://aims.fao.org/aos/agrovoc/c_10289, F40 - Écologie végétale, traitement des données, phenology, 333, [SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics, [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems, Machine learning, [SDV.BID.SPT] Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_3565, 580, collection botanique, stade de développement végétal, deep learning, Deep learning, traitement numérique d'image, http://aims.fao.org/aos/agrovoc/c_9000033, Climate Action, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, http://aims.fao.org/aos/agrovoc/c_5774, [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
