- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019 SpainPublisher:Wiley Authors: Alejandro Calderón;Mercè Segarra;
Anabel Palacios; Camila Barreneche; +4 AuthorsMercè Segarra
Mercè Segarra in OpenAIREAlejandro Calderón;Mercè Segarra;
Anabel Palacios; Camila Barreneche; Camila Barreneche; Alfonso Rodriguez-Sanchez;Mercè Segarra
Mercè Segarra in OpenAIREAna Inés Fernández;
Ana Inés Fernández
Ana Inés Fernández in OpenAIRECristina Prieto;
Cristina Prieto
Cristina Prieto in OpenAIREdoi: 10.1002/est2.63
AbstractCurrent concentrated solar power (CSP) plants that operate at the highest temperature use molten salts as both heat transfer fluid (HTF) and thermal energy storage (TES) medium. Molten salts can reach up to 565°C before becoming chemically unstable and highly corrosive. This is one of the higher weaknesses of the technology. Solid particles have been proposed to overcome current working temperature limits, since the particle media can be stable for temperatures close to 1000°C. This work presents a review of solid particles candidates to be used as HTF and TES in CSP plants in open receivers. In addition, the interactions between solid particles with major system components are described in this review, for example, with TES system or heat exchanger. The parameters and properties of solid particles are identified from the material science point of view explaining their nature and the relation to the power plant efficiency and lifetime durability. Finally, future development is proposed; such as material selection according to each specific design, materials characterization, or durability test.
Energy Storage arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy StorageArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/est2.63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 70visibility views 70 download downloads 244 Powered bymore_vert Energy Storage arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy StorageArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/est2.63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 SpainPublisher:Wiley Authors: Alejandro Calderón;Mercè Segarra;
Anabel Palacios; Camila Barreneche; +4 AuthorsMercè Segarra
Mercè Segarra in OpenAIREAlejandro Calderón;Mercè Segarra;
Anabel Palacios; Camila Barreneche; Camila Barreneche; Alfonso Rodriguez-Sanchez;Mercè Segarra
Mercè Segarra in OpenAIREAna Inés Fernández;
Ana Inés Fernández
Ana Inés Fernández in OpenAIRECristina Prieto;
Cristina Prieto
Cristina Prieto in OpenAIREdoi: 10.1002/est2.63
AbstractCurrent concentrated solar power (CSP) plants that operate at the highest temperature use molten salts as both heat transfer fluid (HTF) and thermal energy storage (TES) medium. Molten salts can reach up to 565°C before becoming chemically unstable and highly corrosive. This is one of the higher weaknesses of the technology. Solid particles have been proposed to overcome current working temperature limits, since the particle media can be stable for temperatures close to 1000°C. This work presents a review of solid particles candidates to be used as HTF and TES in CSP plants in open receivers. In addition, the interactions between solid particles with major system components are described in this review, for example, with TES system or heat exchanger. The parameters and properties of solid particles are identified from the material science point of view explaining their nature and the relation to the power plant efficiency and lifetime durability. Finally, future development is proposed; such as material selection according to each specific design, materials characterization, or durability test.
Energy Storage arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy StorageArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/est2.63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 70visibility views 70 download downloads 244 Powered bymore_vert Energy Storage arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAEnergy StorageArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/est2.63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors:Alejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREAnabel Palacios;
Anabel Palacios
Anabel Palacios in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMercè Segarra;
+3 AuthorsMercè Segarra
Mercè Segarra in OpenAIREAlejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREAnabel Palacios;
Anabel Palacios
Anabel Palacios in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIRECristina Prieto;
Alfonso Rodriguez-Sanchez;Cristina Prieto
Cristina Prieto in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREThermal energy constitutes up to 90% of global energy budget, centering on heat conversion, transmission, and storage; therefore, the technology for harvesting solar energy worth to be developed. One of them is the concentrated solar power (CSP) solar towers where sun-tracking heliostats reflect solar radiation to the top of a tower where the receiver is located. The great advantage of CSP over other renewable energy sources is that energy storage is feasible, particularly when the heat transfer fluid (HTF) is also used as thermal energy storage (TES) material which is the case of solid particles. A lot of development efforts are under way for achieving commercial direct solar solid-particle systems. Solid particle systems for transferring high temperature thermal energy are purposed for increasing the efficiency of these systems when converting heat into electric power. This review recapitulates the concept of these systems taking into account the main receiver designs, particle conveyance, particle storage systems and components, the heat exchanger, and the main challenges that must be overcome to split this technology as a commercial one, especially from the materials availability point of view. This review summarizes the actual status of the use of solid particles for TES and as HTF for CSP Tower, and condenses all the available information and classifies them considering the main functional parts and remarking the current research in each part as well as the future challenging issues.
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 71visibility views 71 download downloads 383 Powered bymore_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors:Alejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREAnabel Palacios;
Anabel Palacios
Anabel Palacios in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMercè Segarra;
+3 AuthorsMercè Segarra
Mercè Segarra in OpenAIREAlejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREAnabel Palacios;
Anabel Palacios
Anabel Palacios in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIRECristina Prieto;
Alfonso Rodriguez-Sanchez;Cristina Prieto
Cristina Prieto in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREThermal energy constitutes up to 90% of global energy budget, centering on heat conversion, transmission, and storage; therefore, the technology for harvesting solar energy worth to be developed. One of them is the concentrated solar power (CSP) solar towers where sun-tracking heliostats reflect solar radiation to the top of a tower where the receiver is located. The great advantage of CSP over other renewable energy sources is that energy storage is feasible, particularly when the heat transfer fluid (HTF) is also used as thermal energy storage (TES) material which is the case of solid particles. A lot of development efforts are under way for achieving commercial direct solar solid-particle systems. Solid particle systems for transferring high temperature thermal energy are purposed for increasing the efficiency of these systems when converting heat into electric power. This review recapitulates the concept of these systems taking into account the main receiver designs, particle conveyance, particle storage systems and components, the heat exchanger, and the main challenges that must be overcome to split this technology as a commercial one, especially from the materials availability point of view. This review summarizes the actual status of the use of solid particles for TES and as HTF for CSP Tower, and condenses all the available information and classifies them considering the main functional parts and remarking the current research in each part as well as the future challenging issues.
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 71visibility views 71 download downloads 383 Powered bymore_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors:Calderón Díaz, Alejandro;
Barreneche, Camila;Calderón Díaz, Alejandro
Calderón Díaz, Alejandro in OpenAIREFernández Renna, Ana Inés;
Fernández Renna, Ana Inés
Fernández Renna, Ana Inés in OpenAIRESegarra Rubí, Mercè;
Segarra Rubí, Mercè
Segarra Rubí, Mercè in OpenAIREDurability and reliability of solid particles to be used in concentrating solar power tower plants is crucial for the project viability. Solid particles materials to be implemented in concentrating solar power plants are thermal aged and thermal cycled in this study to evaluation of solid particles at high temperatures. A homemade device has been developed to perform accelerated-durability tests, that allows emulation of thermal cycling stress from days to years, and even evaluate the 11,000 cycles expected to be reached during 20 years' plant's lifetime in less than four months. A detailed description of the operation of this device is included in this paper. In addition, current solar absorptance, chemical composition, physical properties, thermal characteristics, and morphologic analysis of the samples before and after thermal treatments have been performed. The materials under the study are the most reliable solid particles reported in CSP field: silicon carbide (SiC) and CarboHSP® 30/60. Characterization results show that SiC is more affected on its durability by thermal cycling than by constant temperature aging treatment while CarboHSP® is affected by temperature aging rather than thermal cycling. SiC reacts with oxygen to form SiO2 on the surface, with a positive effect in its solar absorptance. Nevertheless, with thermal cycles, SiC particle surface becomes damaged and the reaction continues with more new exposed surface. Meanwhile, CarboHSP® reduces its solar absorptance with high temperature only due to changes in its surface chemical composition. However, thermal cycling shows no negative effect in CarboHSP® properties.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 81visibility views 81 download downloads 252 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors:Calderón Díaz, Alejandro;
Barreneche, Camila;Calderón Díaz, Alejandro
Calderón Díaz, Alejandro in OpenAIREFernández Renna, Ana Inés;
Fernández Renna, Ana Inés
Fernández Renna, Ana Inés in OpenAIRESegarra Rubí, Mercè;
Segarra Rubí, Mercè
Segarra Rubí, Mercè in OpenAIREDurability and reliability of solid particles to be used in concentrating solar power tower plants is crucial for the project viability. Solid particles materials to be implemented in concentrating solar power plants are thermal aged and thermal cycled in this study to evaluation of solid particles at high temperatures. A homemade device has been developed to perform accelerated-durability tests, that allows emulation of thermal cycling stress from days to years, and even evaluate the 11,000 cycles expected to be reached during 20 years' plant's lifetime in less than four months. A detailed description of the operation of this device is included in this paper. In addition, current solar absorptance, chemical composition, physical properties, thermal characteristics, and morphologic analysis of the samples before and after thermal treatments have been performed. The materials under the study are the most reliable solid particles reported in CSP field: silicon carbide (SiC) and CarboHSP® 30/60. Characterization results show that SiC is more affected on its durability by thermal cycling than by constant temperature aging treatment while CarboHSP® is affected by temperature aging rather than thermal cycling. SiC reacts with oxygen to form SiO2 on the surface, with a positive effect in its solar absorptance. Nevertheless, with thermal cycles, SiC particle surface becomes damaged and the reaction continues with more new exposed surface. Meanwhile, CarboHSP® reduces its solar absorptance with high temperature only due to changes in its surface chemical composition. However, thermal cycling shows no negative effect in CarboHSP® properties.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 81visibility views 81 download downloads 252 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSAuthors:A. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREAlejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREMercè Segarra;
Esther Galindo; +3 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREAlejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREMercè Segarra;
Esther Galindo;Mercè Segarra
Mercè Segarra in OpenAIRECamila Barreneche;
Camila Barreneche; Karla Hernández-Valle;Camila Barreneche
Camila Barreneche in OpenAIREEnergy storage technologies can provide energy security, fight climate change, and improve the value of current or future energy systems. Thermal Energy Storage (TES) is a key enable technology, it allows to stock thermal energy that can be further used for heating and cooling applications and power generation. The methods and tools used to analyse all the literature about the evolution of TES systems research are described in this paper. Bibliometrics is the science that studies, in a statistical way, the written publications of a certain field of research, and it is considered one of the few interdisciplinary research fields that can be extended to almost all scientific areas. The bibliometric analysis of the database Web-of-science (core collection) shows highlighted information in order to figure out the scientific outputs. The importance of the bibliometrics is to analyse a knowledge development from a strategic point of view in order to detect its evolution regarding the research in such a field and to detect which are the opportunities within this area. This study presents the publication evolution in TES field over the last two decades, per year, per country, per authors, per journal, and per TES technology, taking into account sensible heat TES (SHTES), latent heat TES (LHTES), and thermochemical energy storage (TCS), and considering the connection between authorship communities and country interactions. The communities are obtained from the co/authorships, regardless of the country or affiliation; this permits to view the size of the communities, as well as to identify collaboration opportunities between communities with low or no interaction. Furthermore, studies are included regarding detailed analysis on each TES technology, as well as other factors (such as funding) that can influence the current and future research.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.01.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 85visibility views 85 download downloads 225 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.01.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSAuthors:A. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREAlejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREMercè Segarra;
Esther Galindo; +3 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREAlejandro Calderón;
Alejandro Calderón
Alejandro Calderón in OpenAIREMercè Segarra;
Esther Galindo;Mercè Segarra
Mercè Segarra in OpenAIRECamila Barreneche;
Camila Barreneche; Karla Hernández-Valle;Camila Barreneche
Camila Barreneche in OpenAIREEnergy storage technologies can provide energy security, fight climate change, and improve the value of current or future energy systems. Thermal Energy Storage (TES) is a key enable technology, it allows to stock thermal energy that can be further used for heating and cooling applications and power generation. The methods and tools used to analyse all the literature about the evolution of TES systems research are described in this paper. Bibliometrics is the science that studies, in a statistical way, the written publications of a certain field of research, and it is considered one of the few interdisciplinary research fields that can be extended to almost all scientific areas. The bibliometric analysis of the database Web-of-science (core collection) shows highlighted information in order to figure out the scientific outputs. The importance of the bibliometrics is to analyse a knowledge development from a strategic point of view in order to detect its evolution regarding the research in such a field and to detect which are the opportunities within this area. This study presents the publication evolution in TES field over the last two decades, per year, per country, per authors, per journal, and per TES technology, taking into account sensible heat TES (SHTES), latent heat TES (LHTES), and thermochemical energy storage (TCS), and considering the connection between authorship communities and country interactions. The communities are obtained from the co/authorships, regardless of the country or affiliation; this permits to view the size of the communities, as well as to identify collaboration opportunities between communities with low or no interaction. Furthermore, studies are included regarding detailed analysis on each TES technology, as well as other factors (such as funding) that can influence the current and future research.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.01.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 85visibility views 85 download downloads 225 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.01.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Spain, Spain, Spain, Spain, Australia, SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors:A. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMartin Belusko;
Martin Belusko
Martin Belusko in OpenAIREMercè Segarra;
+2 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMartin Belusko;
Martin Belusko
Martin Belusko in OpenAIREMercè Segarra;
Frank Bruno; Luisa F. Cabeza;Mercè Segarra
Mercè Segarra in OpenAIREhandle: 11541.2/127734 , 10459.1/64840
The use of paraffin, salts and salt hydrates as phase change materials (PCMs) have been researched extensively and used in a number of commercial applications. However, metals and metal alloys, which possess a high storage density on a volume basis as well as a substantially higher thermal conductivity, has received much less attention. This paper discusses the considerations for the use of metal and metal alloys as phase change materials for high temperature thermal storage applications, as well as summarises the literature on the limited research in this area. Although some pure metals and metal alloys present interesting thermal properties to be used as PCMs in thermal storage systems, there is a lack of understanding on the implications of the metallurgical aspects related to the melting and solidification of these materials under thermal cycling at high temperatures. The main issues to be considered include vapour pressure, undercooling, corrosion, segregation, changes in composition and microstructure, changes in thermal properties and undesired reactions. Further research is needed before these materials can be used as PCMs in thermal energy storage systems in industry. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and DIOPMA (2014 SGR 1543), and also the Spanish Government for the projects ENE2015-64117-C5-1-R and ENE2015-64117-C5-2-R (MINECO/FEDER, UE). Dr. Camila Barreneche would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-22886. This paper was produced with support from the “Premier’s Research Industry Fund - International Research Grant Program” (IRGP 33) funded by the Government of South Australia.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 102visibility views 102 download downloads 391 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Spain, Spain, Spain, Spain, Australia, SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors:A. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMartin Belusko;
Martin Belusko
Martin Belusko in OpenAIREMercè Segarra;
+2 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMartin Belusko;
Martin Belusko
Martin Belusko in OpenAIREMercè Segarra;
Frank Bruno; Luisa F. Cabeza;Mercè Segarra
Mercè Segarra in OpenAIREhandle: 11541.2/127734 , 10459.1/64840
The use of paraffin, salts and salt hydrates as phase change materials (PCMs) have been researched extensively and used in a number of commercial applications. However, metals and metal alloys, which possess a high storage density on a volume basis as well as a substantially higher thermal conductivity, has received much less attention. This paper discusses the considerations for the use of metal and metal alloys as phase change materials for high temperature thermal storage applications, as well as summarises the literature on the limited research in this area. Although some pure metals and metal alloys present interesting thermal properties to be used as PCMs in thermal storage systems, there is a lack of understanding on the implications of the metallurgical aspects related to the melting and solidification of these materials under thermal cycling at high temperatures. The main issues to be considered include vapour pressure, undercooling, corrosion, segregation, changes in composition and microstructure, changes in thermal properties and undesired reactions. Further research is needed before these materials can be used as PCMs in thermal energy storage systems in industry. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and DIOPMA (2014 SGR 1543), and also the Spanish Government for the projects ENE2015-64117-C5-1-R and ENE2015-64117-C5-2-R (MINECO/FEDER, UE). Dr. Camila Barreneche would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-22886. This paper was produced with support from the “Premier’s Research Industry Fund - International Research Grant Program” (IRGP 33) funded by the Government of South Australia.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 102visibility views 102 download downloads 391 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: Josep Maria Chimenos; L. Guzman; Ferran Espiell;Pere-Lluís Cabot;
+1 AuthorsPere-Lluís Cabot
Pere-Lluís Cabot in OpenAIREJosep Maria Chimenos; L. Guzman; Ferran Espiell;Pere-Lluís Cabot;
Pere-Lluís Cabot
Pere-Lluís Cabot in OpenAIREMercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIREAbstract The kinetics of conventional gold cyanidation in air has been studied using open circuit potential measurements, voltammetry and atomic absorption spectrophotometry. The experimental results show that this is a complex process characterized by the interdependency of the different variables (cyanide concentration, pH, temperature and stirring speed). The measurement of the mixed potentials at which the process takes place gives valuable information to ascertain the influence of each variable. A good correlation between mixed potential and dissolution rate, thus having a potential interest for an industrial application, has been found. The study of the current—potential curves for oxygen reduction on gold surface and anodic dissolution of gold in cyanide solutions gives more insight into the control of the process: depending on the experimental conditions, gold dissolution takes place in the active region (oxygen diffusion control) or in the potential region where dissolution of adsorbed species limits the rate of the process. Depending also on the experimental conditions, two or four electrons are transferred per oxygen molecule.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(98)00392-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(98)00392-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: Josep Maria Chimenos; L. Guzman; Ferran Espiell;Pere-Lluís Cabot;
+1 AuthorsPere-Lluís Cabot
Pere-Lluís Cabot in OpenAIREJosep Maria Chimenos; L. Guzman; Ferran Espiell;Pere-Lluís Cabot;
Pere-Lluís Cabot
Pere-Lluís Cabot in OpenAIREMercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIREAbstract The kinetics of conventional gold cyanidation in air has been studied using open circuit potential measurements, voltammetry and atomic absorption spectrophotometry. The experimental results show that this is a complex process characterized by the interdependency of the different variables (cyanide concentration, pH, temperature and stirring speed). The measurement of the mixed potentials at which the process takes place gives valuable information to ascertain the influence of each variable. A good correlation between mixed potential and dissolution rate, thus having a potential interest for an industrial application, has been found. The study of the current—potential curves for oxygen reduction on gold surface and anodic dissolution of gold in cyanide solutions gives more insight into the control of the process: depending on the experimental conditions, gold dissolution takes place in the active region (oxygen diffusion control) or in the potential region where dissolution of adsorbed species limits the rate of the process. Depending also on the experimental conditions, two or four electrons are transferred per oxygen molecule.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(98)00392-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(98)00392-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United Kingdom, SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors:Mercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIREJ Gallardo-Gonzalez;
J Gallardo-Gonzalez
J Gallardo-Gonzalez in OpenAIREAna Inés Fernández;
Ana Inés Fernández
Ana Inés Fernández in OpenAIRECamila Barreneche;
+5 AuthorsCamila Barreneche
Camila Barreneche in OpenAIREMercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIREJ Gallardo-Gonzalez;
J Gallardo-Gonzalez
J Gallardo-Gonzalez in OpenAIREAna Inés Fernández;
Ana Inés Fernández
Ana Inés Fernández in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMing Liu;
Ming Liu
Ming Liu in OpenAIREMònica Martínez;
N.H.S. Tay; N.H.S. Tay;Mònica Martínez
Mònica Martínez in OpenAIREFrank Bruno;
Frank Bruno
Frank Bruno in OpenAIREhandle: 11541.2/132786
Considerable effort has been devoted to the characterization of thermal properties of the different types of materials that can be used as thermal energy storage (TES) media, but scarce literature exists concerning the materials to manufacture the tanks that can be used to contain these storage media. One of the main concerns when selecting the most suitable material for these tanks is its resistance to corrosion due to molten salts that constitute the TES system. Dynamic gravimetric analysis is a newly proposed method for the study of corrosion on metals, which optimizes the standard procedure described by ASTM G1-03. The new technique avoids the direct handling of samples, so more accurate values can be obtained. In this work, the resistance to corrosion of AISI 316 stainless steel samples in contact with commercial grade molten salts of the Li2CO3-Na2CO3-K2CO3 system, at 600 °C for different exposure times, has been determined by using this new methodology. The results show that the initial corrosion rate is lower at higher amounts of lithium carbonate present in the molten salts mixture.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 58visibility views 58 download downloads 206 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United Kingdom, SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors:Mercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIREJ Gallardo-Gonzalez;
J Gallardo-Gonzalez
J Gallardo-Gonzalez in OpenAIREAna Inés Fernández;
Ana Inés Fernández
Ana Inés Fernández in OpenAIRECamila Barreneche;
+5 AuthorsCamila Barreneche
Camila Barreneche in OpenAIREMercè Segarra;
Mercè Segarra
Mercè Segarra in OpenAIREJ Gallardo-Gonzalez;
J Gallardo-Gonzalez
J Gallardo-Gonzalez in OpenAIREAna Inés Fernández;
Ana Inés Fernández
Ana Inés Fernández in OpenAIRECamila Barreneche;
Camila Barreneche
Camila Barreneche in OpenAIREMing Liu;
Ming Liu
Ming Liu in OpenAIREMònica Martínez;
N.H.S. Tay; N.H.S. Tay;Mònica Martínez
Mònica Martínez in OpenAIREFrank Bruno;
Frank Bruno
Frank Bruno in OpenAIREhandle: 11541.2/132786
Considerable effort has been devoted to the characterization of thermal properties of the different types of materials that can be used as thermal energy storage (TES) media, but scarce literature exists concerning the materials to manufacture the tanks that can be used to contain these storage media. One of the main concerns when selecting the most suitable material for these tanks is its resistance to corrosion due to molten salts that constitute the TES system. Dynamic gravimetric analysis is a newly proposed method for the study of corrosion on metals, which optimizes the standard procedure described by ASTM G1-03. The new technique avoids the direct handling of samples, so more accurate values can be obtained. In this work, the resistance to corrosion of AISI 316 stainless steel samples in contact with commercial grade molten salts of the Li2CO3-Na2CO3-K2CO3 system, at 600 °C for different exposure times, has been determined by using this new methodology. The results show that the initial corrosion rate is lower at higher amounts of lithium carbonate present in the molten salts mixture.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 58visibility views 58 download downloads 206 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors:A. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREM. Niubó;
Cristian Solé;M. Niubó
M. Niubó in OpenAIREMercè Segarra;
+5 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREM. Niubó;
Cristian Solé;M. Niubó
M. Niubó in OpenAIREMercè Segarra;
Ferran Espiell;Mercè Segarra
Mercè Segarra in OpenAIRECamila Barreneche;
Camila Barreneche; José M. Chimenos;Camila Barreneche
Camila Barreneche in OpenAIRELuisa F. Cabeza;
Luisa F. Cabeza
Luisa F. Cabeza in OpenAIREAbstract Energy consumption for thermal comfort in buildings reached 20–40% of total energy consumption in the developed countries. This study evaluates the performance of a composite material with enhanced thermal inertia formulated with a solid waste to be used in buildings. The feasibility of incorporating electric arc furnace dust (EAFD) was evaluated. EAFD is a special waste used as filler in a polymer matrix. Paraffin wax is added with two functions: on one side as lubricant agent to promote a correct mixing between the inorganic filler and the polymeric matrix. Moreover, paraffin acts as phase change material (PCM) due to their high thermal energy storage (TES) capacity as latent heat from the phase change. In order to evaluate the performance as part of building systems of new material developed in this paper, several composite formulations were prepared and tensile strength test were performed, the thermal properties were analyzed by differential scanning calorimetry (DSC) and airborne noise acoustic properties were tested using an experimental cabin based on the UNE-EN-ISO140. The results were compared with a commercial material for acoustic insulation in constructive solutions. The material developed was a 3 mm dense sheet able to be used in combination with other materials as constructive systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors:A. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREM. Niubó;
Cristian Solé;M. Niubó
M. Niubó in OpenAIREMercè Segarra;
+5 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;
A. Inés Fernández
A. Inés Fernández in OpenAIREM. Niubó;
Cristian Solé;M. Niubó
M. Niubó in OpenAIREMercè Segarra;
Ferran Espiell;Mercè Segarra
Mercè Segarra in OpenAIRECamila Barreneche;
Camila Barreneche; José M. Chimenos;Camila Barreneche
Camila Barreneche in OpenAIRELuisa F. Cabeza;
Luisa F. Cabeza
Luisa F. Cabeza in OpenAIREAbstract Energy consumption for thermal comfort in buildings reached 20–40% of total energy consumption in the developed countries. This study evaluates the performance of a composite material with enhanced thermal inertia formulated with a solid waste to be used in buildings. The feasibility of incorporating electric arc furnace dust (EAFD) was evaluated. EAFD is a special waste used as filler in a polymer matrix. Paraffin wax is added with two functions: on one side as lubricant agent to promote a correct mixing between the inorganic filler and the polymeric matrix. Moreover, paraffin acts as phase change material (PCM) due to their high thermal energy storage (TES) capacity as latent heat from the phase change. In order to evaluate the performance as part of building systems of new material developed in this paper, several composite formulations were prepared and tensile strength test were performed, the thermal properties were analyzed by differential scanning calorimetry (DSC) and airborne noise acoustic properties were tested using an experimental cabin based on the UNE-EN-ISO140. The results were compared with a commercial material for acoustic insulation in constructive solutions. The material developed was a 3 mm dense sheet able to be used in combination with other materials as constructive systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Mercè Segarra;
Ferran Espiell;Mercè Segarra
Mercè Segarra in OpenAIREMiguel Morales;
Miguel Morales
Miguel Morales in OpenAIREAbstract Fuel Cells (FCs) are electrochemical devices that directly convert the chemical energy of a reaction into electrical energy. The energy conversion processes theoretically remain unaltered as long as the fuel and oxidant feed the device. A single cell consists of two electrodes (anode and cathode), and an electrolyte, which can be a solid oxide that transports ions, thus becoming a SOFC (solid oxide fuel cell). To achieve the oxide-ion conductivity necessary to ensure high enough power density, these fuel cells require high and/or intermediate temperatures (over 500 °C).The fuel conversion efficiency of conventional SOFCs is usually about 50%. Thus, much of the chemical energy converts into waste heat energy, whereas thermoelectric materials can generate electricity from the waste heat. Some studies have been published in which the cathode of the fuel cell has been replaced by a thermoelectric material, and different simulation studies have been performed in which the waste heat is harnessed by thermoelectrics in a heat exchanger. The aim of this work is to provide an overview of thermoelectric materials that could help to select the best one to harness the heat evolved by a SOFC device to increase its efficiency. Data has been collected for different thermoelectric materials, including their thermoelectric performance, operation temperature range, and cost. To choose a thermoelectric material, it is necessary to define a performance parameter that allows us to classify all the different materials by means of their performance. Among the best, operating temperature and cost will turn into constraints that must be met to find the best material that suits the characteristics of a SOFC operation environment, and that really can be used in combination with the fuel cell.
Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2015.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2015.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Mercè Segarra;
Ferran Espiell;Mercè Segarra
Mercè Segarra in OpenAIREMiguel Morales;
Miguel Morales
Miguel Morales in OpenAIREAbstract Fuel Cells (FCs) are electrochemical devices that directly convert the chemical energy of a reaction into electrical energy. The energy conversion processes theoretically remain unaltered as long as the fuel and oxidant feed the device. A single cell consists of two electrodes (anode and cathode), and an electrolyte, which can be a solid oxide that transports ions, thus becoming a SOFC (solid oxide fuel cell). To achieve the oxide-ion conductivity necessary to ensure high enough power density, these fuel cells require high and/or intermediate temperatures (over 500 °C).The fuel conversion efficiency of conventional SOFCs is usually about 50%. Thus, much of the chemical energy converts into waste heat energy, whereas thermoelectric materials can generate electricity from the waste heat. Some studies have been published in which the cathode of the fuel cell has been replaced by a thermoelectric material, and different simulation studies have been performed in which the waste heat is harnessed by thermoelectrics in a heat exchanger. The aim of this work is to provide an overview of thermoelectric materials that could help to select the best one to harness the heat evolved by a SOFC device to increase its efficiency. Data has been collected for different thermoelectric materials, including their thermoelectric performance, operation temperature range, and cost. To choose a thermoelectric material, it is necessary to define a performance parameter that allows us to classify all the different materials by means of their performance. Among the best, operating temperature and cost will turn into constraints that must be met to find the best material that suits the characteristics of a SOFC operation environment, and that really can be used in combination with the fuel cell.
Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2015.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2015.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Spain, AustraliaPublisher:Elsevier BV Authors:Stuart Bell;
Stuart Bell
Stuart Bell in OpenAIREMercè Segarra;
N.H. Steven Tay; N.H. Steven Tay; +4 AuthorsMercè Segarra
Mercè Segarra in OpenAIREStuart Bell;
Stuart Bell
Stuart Bell in OpenAIREMercè Segarra;
N.H. Steven Tay; N.H. Steven Tay;Mercè Segarra
Mercè Segarra in OpenAIREGeoffrey Will;
Wasim Saman; Frank Bruno;Geoffrey Will
Geoffrey Will in OpenAIREMing Liu;
Ming Liu
Ming Liu in OpenAIREhandle: 11541.2/127009
Thermal energy storage (TES) is a critical component in a concentrated solar power (CSP) plant since it is able to provide dispatchability and increase the capacity factor of the plant. Recently the Brayton power cycle using supercritical carbon dioxide (s-CO2) has attracted considerable attention as it allows a higher thermal to electric power conversion efficiency compared to the conventional Rankine cycle using subcritical steam. However, no commercial TES has yet been developed for integration with a s-CO2 based plant. One reason is the lack of a suitable storage material. This work explores the use of a eutectic NaCl-Na2CO3 salt as a reliable high temperature phase change material (PCM). The PCM has been thermally cycled up to 1000 times. Its thermophysical properties have been measured before and after it has been subjected to the thermal cycling and its corrosion behavior has been investigated. This eutectic salt shows good thermal stability without degradation after cycling 1000 times between 600 and 650 °C. The corrosion rate on stainless steel 316 (SS316) increases linearly up to 350 cycles, and thereafter it stabilizes at 70 mg/cm2.
Solar Energy Materia... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 266 Powered bymore_vert Solar Energy Materia... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Spain, AustraliaPublisher:Elsevier BV Authors:Stuart Bell;
Stuart Bell
Stuart Bell in OpenAIREMercè Segarra;
N.H. Steven Tay; N.H. Steven Tay; +4 AuthorsMercè Segarra
Mercè Segarra in OpenAIREStuart Bell;
Stuart Bell
Stuart Bell in OpenAIREMercè Segarra;
N.H. Steven Tay; N.H. Steven Tay;Mercè Segarra
Mercè Segarra in OpenAIREGeoffrey Will;
Wasim Saman; Frank Bruno;Geoffrey Will
Geoffrey Will in OpenAIREMing Liu;
Ming Liu
Ming Liu in OpenAIREhandle: 11541.2/127009
Thermal energy storage (TES) is a critical component in a concentrated solar power (CSP) plant since it is able to provide dispatchability and increase the capacity factor of the plant. Recently the Brayton power cycle using supercritical carbon dioxide (s-CO2) has attracted considerable attention as it allows a higher thermal to electric power conversion efficiency compared to the conventional Rankine cycle using subcritical steam. However, no commercial TES has yet been developed for integration with a s-CO2 based plant. One reason is the lack of a suitable storage material. This work explores the use of a eutectic NaCl-Na2CO3 salt as a reliable high temperature phase change material (PCM). The PCM has been thermally cycled up to 1000 times. Its thermophysical properties have been measured before and after it has been subjected to the thermal cycling and its corrosion behavior has been investigated. This eutectic salt shows good thermal stability without degradation after cycling 1000 times between 600 and 650 °C. The corrosion rate on stainless steel 316 (SS316) increases linearly up to 350 cycles, and thereafter it stabilizes at 70 mg/cm2.
Solar Energy Materia... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 266 Powered bymore_vert Solar Energy Materia... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu