- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Arshad Ali; Anvar Sanaei; Mingshi Li; Omid Asadi Nalivan; Khaled Ahmadaali; Mohsen Javanmiri Pour; Ahmad Valipour; Jalil Karami; Mohammad Aminpour; Hasan Kaboli; Yousef Askari;pmid: 31940728
Understanding the impacts of multiple climatic and edaphic factors on forest diversity, structure and biomass is crucial to predicting how forests will react to global environmental change. Here, we addressed how do forest structural attributes (i.e. top 1% big, top 25% big medium and small trees; in terms of tree height, diameter, and crown), species richness, and aboveground biomass respond to temperature-related and water-related climatic factors as well as to edaphic factors. By assuming disturbance as a constant factor in the study forests, we hypothesize that water-related and temperature-related climatic factors play contrasting roles whereas edaphic factors play an additional role in shaping forest diversity, structure and aboveground biomass in species-poor and structurally-complex forests. We used forest inventory and environmental factors data from 248 forest plots (moist temperate, semi-humid, and semi-arid) across 12 sites in Iran. We developed multiple linear mixed-effect models for each response variable by using multiple climatic and edaphic factors as fixed effects whereas sites as a random effect. Top 1% big, top 25% big, medium, and small trees enhanced with mean annual temperature but declined with water-related climatic (i.e. mean annual precipitation, cloud cover, potential evapotranspiration, and wet day frequency) factors, whereas soil texture (i.e. sand content) and pH were of additional importance. Species richness increased with precipitation and cloud cover but decreased with temperature, potential evapotranspiration, soil fertility and sand content. Aboveground biomass increased along temperature gradient but decreased with potential evapotranspiration, clay and sand contents. Temperature seemed to be the main driver underlying the increase in forest structure (i.e. diameter-related attributes) and biomass whereas precipitation did so for species richness. We argue that the impacts of multiple climatic factors on forest structural attributes, diversity and biomass should be properly evaluated in order to better understand the responses of species-poor forests to climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Arshad Ali; Anvar Sanaei; Omid Asadi Nalivan; Khaled Ahmadaali; Mohsen Javanmiri Pour; Ahmad Valipour; Jalil Karami; Mohammad Aminpour; Hasan Kaboli; Yousef Askari;pmid: 32224404
Strong competitor (i.e. big-sized) trees are globally crucial for promoting aboveground biomass. Still, we do not fully understand the simultaneous influences of different levels of competitor (i.e. strong, moderate, medium and weak) trees at stand level in shaping forest diversity and biomass along a climatic gradient. We hypothesized that few strong competitor trees shape the positive relationship between tree species richness and aboveground biomass better than moderate, medium and weak competitor trees along a climatic gradient. Using the forest inventory data (i.e. tree diameter, height and crown diameter), we quantified strong (i.e. 99th percentile; top 1%), moderate (i.e. 75th percentile; top 25%), medium (i.e. 50th percentile) and weak (i.e. 25th percentile) competitor trees as well as species richness and aboveground biomass of 248 plots (moist temperate, semi-humid, and semi-arid forests) across 12 sites in Iran. The main results from three piecewise structural equation models (i.e. tree diameter, height and crown based models) showed that, after considering the simultaneous fixed effects of climate and random effects of sites or forest types variation, strong competitor trees possessed strong positive effects on tree species richness and biomass whereas moderate, medium and weak competitor trees possessed negligible positive to negative effects. Also, different levels of competitor trees promoted each other in a top-down way but the effects of strong competitor trees on moderate, medium and weak competitor trees were relatively weak. This study suggests that the simultaneous interactions of different tree sizes at stand level across forest sites should be included in the integrative ecological modeling for better understanding the role of different levels of competitor trees in shaping positive forest diversity - functioning relationship in a changing environment.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Spain, SpainPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Anvar Sanaei; Emma J. Sayer; Zuoqiang Yuan; Hugo Saiz; Manuel Delgado‐Baquerizo; Majid Sadeghinia; Parvaneh Ashouri; Sahar Ghafari; Hasan Kaboli; Mansoureh Kargar; Eric W. Seabloom; Arshad Ali;AbstractPlant diversity supports multiple ecosystem functions, including carbon sequestration. Recent shifts in plant diversity in rangelands due to increased grazing pressure and climate changes have the potential to impact the sequestration of carbon in arid to semi‐humid regions worldwide. However, plant diversity, grazing intensity and carbon storage are also influenced by environmental factors such as nutrient availability, climate and topography. The complexity of these interactions limits our ability to fully assess the impacts of grazing on biodiversity–ecosystem function (BEF) relationships.We assessed how grazing intensity modifies BEF relationships by determining the links between plant diversity and ecosystem carbon stocks (plant and soil carbon) across broad environmental gradients and different plant growth forms. To achieve this, we surveyed 1493 quadrats across 10 rangelands, covering an area of 23,756 ha in northern Iran.We show that above‐ground carbon stocks increased with plant diversity across topographic, climatic and soil fertility gradients. The relationship between above‐ground carbon stocks and plant diversity was strongest for forbs, followed by shrubs and grasses. Soil carbon stocks increased strongly with soil fertility across sites, but aridity, grazing, plant diversity and topography were also important in explaining variation in soil carbon stocks. Importantly, above‐ground and soil carbon stocks declined at high grazing intensity, and grazing modified the relationship between plant diversity and carbon stocks regardless of differences in abiotic conditions across sites.Our study demonstrates that relationships between plant diversity and ecosystem carbon stocks persist across gradients of aridity, topography and soil fertility, but the relationships are modified by grazing intensity. Our findings suggest that potential losses in plant diversity under grazing intensification could reduce ecosystem carbon storage across wide areas of arid to semi‐humid rangelands. We discuss the potential mechanisms underpinning rangeland BEF relationships to stimulate future research.Read the freePlain Language Summaryfor this article on the Journal blog.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 125 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 29 Jun 2022 United Kingdom, Russian Federation, Russian Federation, Netherlands, France, Netherlands, Italy, France, United Kingdom, United States, United Kingdom, United Kingdom, France, Netherlands, United KingdomPublisher:Wiley Funded by:UKRI | Do past fires explain cur..., ANR | TULIP, NSF | Collaborative Research: P... +3 projectsUKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,ANR| TULIP ,NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,NSF| Collaborative Research: Planning And Land Management in Tropical Ecosystem; Complexities of land-use and hydrology coupling in the Panama Canal Watershed ,UKRI| Next generation forest dynamics modelling using remote sensing data ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Loubota Panzou, Grace Jopaul; Feldpausch, Ted; Falster, Daniel; Usoltsev, Vladimir; Adu-Bredu, Stephen; Alves, Luciana; Aminpour, Mohammad; Angoboy, Ilondea; Anten, Niels; Antin, Cécile; Askari, Yousef; Muñoz, Rodrigo; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John; Beeckman, Hans; Bocko, Yannick; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean‐christophe; Doucet, Jean‐louis; Duursma, Remko; Enríquez, Moisés; van Ewijk, Karin; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David; Gilani, Hammad; Godlee, John; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson; He, Jie‐kun; Hemp, Andreas; Hernández-Stefanoni, José; Higgins, Steven; Holdaway, Robert; Hussain, Kiramat; Hutley, Lindsay; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai‐sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean‐joël; Malhi, Yadvinder; Marshall, Peter; Mattsson, Eskil; Matula, Radim; Meave, Jorge; Mensah, Sylvanus; Mi, Xiangcheng; Momo Takoudjou, Stephane; Moncrieff, Glenn; Mora, Francisco; Nissanka, Sarath; O'Hara, Kevin; Pearce, Steven; Pélissier63, Raphaël; Peri, Pablo; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Dupuy-Rada, Juan Manuel; Trugman, Anna; Sellan, Giacomo; Takagi, Kentaro; Ribeiro, Sabina; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank; Wang, Li‐qiu; Svátek, Martin; Ullah, Farman; Vadeboncoeur, Matthew; Valipour, Ahmad; Vanderwel, Mark; Vovides, Alejandra; Wang, Weiwei; Wirth, Christian; Woods, Murray; Xiang, Wenhua; Ximenes, Fabiano de Aquino; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel; Ayyappan, Narayanan;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/35703577Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/32s4k0jnData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/35703577Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/32s4k0jnData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Arshad Ali; Anvar Sanaei; Mingshi Li; Omid Asadi Nalivan; Khaled Ahmadaali; Mohsen Javanmiri Pour; Ahmad Valipour; Jalil Karami; Mohammad Aminpour; Hasan Kaboli; Yousef Askari;pmid: 31940728
Understanding the impacts of multiple climatic and edaphic factors on forest diversity, structure and biomass is crucial to predicting how forests will react to global environmental change. Here, we addressed how do forest structural attributes (i.e. top 1% big, top 25% big medium and small trees; in terms of tree height, diameter, and crown), species richness, and aboveground biomass respond to temperature-related and water-related climatic factors as well as to edaphic factors. By assuming disturbance as a constant factor in the study forests, we hypothesize that water-related and temperature-related climatic factors play contrasting roles whereas edaphic factors play an additional role in shaping forest diversity, structure and aboveground biomass in species-poor and structurally-complex forests. We used forest inventory and environmental factors data from 248 forest plots (moist temperate, semi-humid, and semi-arid) across 12 sites in Iran. We developed multiple linear mixed-effect models for each response variable by using multiple climatic and edaphic factors as fixed effects whereas sites as a random effect. Top 1% big, top 25% big, medium, and small trees enhanced with mean annual temperature but declined with water-related climatic (i.e. mean annual precipitation, cloud cover, potential evapotranspiration, and wet day frequency) factors, whereas soil texture (i.e. sand content) and pH were of additional importance. Species richness increased with precipitation and cloud cover but decreased with temperature, potential evapotranspiration, soil fertility and sand content. Aboveground biomass increased along temperature gradient but decreased with potential evapotranspiration, clay and sand contents. Temperature seemed to be the main driver underlying the increase in forest structure (i.e. diameter-related attributes) and biomass whereas precipitation did so for species richness. We argue that the impacts of multiple climatic factors on forest structural attributes, diversity and biomass should be properly evaluated in order to better understand the responses of species-poor forests to climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Arshad Ali; Anvar Sanaei; Omid Asadi Nalivan; Khaled Ahmadaali; Mohsen Javanmiri Pour; Ahmad Valipour; Jalil Karami; Mohammad Aminpour; Hasan Kaboli; Yousef Askari;pmid: 32224404
Strong competitor (i.e. big-sized) trees are globally crucial for promoting aboveground biomass. Still, we do not fully understand the simultaneous influences of different levels of competitor (i.e. strong, moderate, medium and weak) trees at stand level in shaping forest diversity and biomass along a climatic gradient. We hypothesized that few strong competitor trees shape the positive relationship between tree species richness and aboveground biomass better than moderate, medium and weak competitor trees along a climatic gradient. Using the forest inventory data (i.e. tree diameter, height and crown diameter), we quantified strong (i.e. 99th percentile; top 1%), moderate (i.e. 75th percentile; top 25%), medium (i.e. 50th percentile) and weak (i.e. 25th percentile) competitor trees as well as species richness and aboveground biomass of 248 plots (moist temperate, semi-humid, and semi-arid forests) across 12 sites in Iran. The main results from three piecewise structural equation models (i.e. tree diameter, height and crown based models) showed that, after considering the simultaneous fixed effects of climate and random effects of sites or forest types variation, strong competitor trees possessed strong positive effects on tree species richness and biomass whereas moderate, medium and weak competitor trees possessed negligible positive to negative effects. Also, different levels of competitor trees promoted each other in a top-down way but the effects of strong competitor trees on moderate, medium and weak competitor trees were relatively weak. This study suggests that the simultaneous interactions of different tree sizes at stand level across forest sites should be included in the integrative ecological modeling for better understanding the role of different levels of competitor trees in shaping positive forest diversity - functioning relationship in a changing environment.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Spain, SpainPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Anvar Sanaei; Emma J. Sayer; Zuoqiang Yuan; Hugo Saiz; Manuel Delgado‐Baquerizo; Majid Sadeghinia; Parvaneh Ashouri; Sahar Ghafari; Hasan Kaboli; Mansoureh Kargar; Eric W. Seabloom; Arshad Ali;AbstractPlant diversity supports multiple ecosystem functions, including carbon sequestration. Recent shifts in plant diversity in rangelands due to increased grazing pressure and climate changes have the potential to impact the sequestration of carbon in arid to semi‐humid regions worldwide. However, plant diversity, grazing intensity and carbon storage are also influenced by environmental factors such as nutrient availability, climate and topography. The complexity of these interactions limits our ability to fully assess the impacts of grazing on biodiversity–ecosystem function (BEF) relationships.We assessed how grazing intensity modifies BEF relationships by determining the links between plant diversity and ecosystem carbon stocks (plant and soil carbon) across broad environmental gradients and different plant growth forms. To achieve this, we surveyed 1493 quadrats across 10 rangelands, covering an area of 23,756 ha in northern Iran.We show that above‐ground carbon stocks increased with plant diversity across topographic, climatic and soil fertility gradients. The relationship between above‐ground carbon stocks and plant diversity was strongest for forbs, followed by shrubs and grasses. Soil carbon stocks increased strongly with soil fertility across sites, but aridity, grazing, plant diversity and topography were also important in explaining variation in soil carbon stocks. Importantly, above‐ground and soil carbon stocks declined at high grazing intensity, and grazing modified the relationship between plant diversity and carbon stocks regardless of differences in abiotic conditions across sites.Our study demonstrates that relationships between plant diversity and ecosystem carbon stocks persist across gradients of aridity, topography and soil fertility, but the relationships are modified by grazing intensity. Our findings suggest that potential losses in plant diversity under grazing intensification could reduce ecosystem carbon storage across wide areas of arid to semi‐humid rangelands. We discuss the potential mechanisms underpinning rangeland BEF relationships to stimulate future research.Read the freePlain Language Summaryfor this article on the Journal blog.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 125 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 29 Jun 2022 United Kingdom, Russian Federation, Russian Federation, Netherlands, France, Netherlands, Italy, France, United Kingdom, United States, United Kingdom, United Kingdom, France, Netherlands, United KingdomPublisher:Wiley Funded by:UKRI | Do past fires explain cur..., ANR | TULIP, NSF | Collaborative Research: P... +3 projectsUKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,ANR| TULIP ,NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,NSF| Collaborative Research: Planning And Land Management in Tropical Ecosystem; Complexities of land-use and hydrology coupling in the Panama Canal Watershed ,UKRI| Next generation forest dynamics modelling using remote sensing data ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Loubota Panzou, Grace Jopaul; Feldpausch, Ted; Falster, Daniel; Usoltsev, Vladimir; Adu-Bredu, Stephen; Alves, Luciana; Aminpour, Mohammad; Angoboy, Ilondea; Anten, Niels; Antin, Cécile; Askari, Yousef; Muñoz, Rodrigo; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John; Beeckman, Hans; Bocko, Yannick; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean‐christophe; Doucet, Jean‐louis; Duursma, Remko; Enríquez, Moisés; van Ewijk, Karin; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David; Gilani, Hammad; Godlee, John; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson; He, Jie‐kun; Hemp, Andreas; Hernández-Stefanoni, José; Higgins, Steven; Holdaway, Robert; Hussain, Kiramat; Hutley, Lindsay; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai‐sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean‐joël; Malhi, Yadvinder; Marshall, Peter; Mattsson, Eskil; Matula, Radim; Meave, Jorge; Mensah, Sylvanus; Mi, Xiangcheng; Momo Takoudjou, Stephane; Moncrieff, Glenn; Mora, Francisco; Nissanka, Sarath; O'Hara, Kevin; Pearce, Steven; Pélissier63, Raphaël; Peri, Pablo; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Dupuy-Rada, Juan Manuel; Trugman, Anna; Sellan, Giacomo; Takagi, Kentaro; Ribeiro, Sabina; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank; Wang, Li‐qiu; Svátek, Martin; Ullah, Farman; Vadeboncoeur, Matthew; Valipour, Ahmad; Vanderwel, Mark; Vovides, Alejandra; Wang, Weiwei; Wirth, Christian; Woods, Murray; Xiang, Wenhua; Ximenes, Fabiano de Aquino; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel; Ayyappan, Narayanan;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/35703577Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/32s4k0jnData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/35703577Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/32s4k0jnData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu