Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Environmental filtering, predominance of strong competitor trees and exclusion of moderate-weak competitor trees shape species richness and biomass

Authors: Arshad Ali; Anvar Sanaei; Omid Asadi Nalivan; Khaled Ahmadaali; Mohsen Javanmiri Pour; Ahmad Valipour; Jalil Karami; +3 Authors

Environmental filtering, predominance of strong competitor trees and exclusion of moderate-weak competitor trees shape species richness and biomass

Abstract

Strong competitor (i.e. big-sized) trees are globally crucial for promoting aboveground biomass. Still, we do not fully understand the simultaneous influences of different levels of competitor (i.e. strong, moderate, medium and weak) trees at stand level in shaping forest diversity and biomass along a climatic gradient. We hypothesized that few strong competitor trees shape the positive relationship between tree species richness and aboveground biomass better than moderate, medium and weak competitor trees along a climatic gradient. Using the forest inventory data (i.e. tree diameter, height and crown diameter), we quantified strong (i.e. 99th percentile; top 1%), moderate (i.e. 75th percentile; top 25%), medium (i.e. 50th percentile) and weak (i.e. 25th percentile) competitor trees as well as species richness and aboveground biomass of 248 plots (moist temperate, semi-humid, and semi-arid forests) across 12 sites in Iran. The main results from three piecewise structural equation models (i.e. tree diameter, height and crown based models) showed that, after considering the simultaneous fixed effects of climate and random effects of sites or forest types variation, strong competitor trees possessed strong positive effects on tree species richness and biomass whereas moderate, medium and weak competitor trees possessed negligible positive to negative effects. Also, different levels of competitor trees promoted each other in a top-down way but the effects of strong competitor trees on moderate, medium and weak competitor trees were relatively weak. This study suggests that the simultaneous interactions of different tree sizes at stand level across forest sites should be included in the integrative ecological modeling for better understanding the role of different levels of competitor trees in shaping positive forest diversity - functioning relationship in a changing environment.

Related Organizations
Keywords

Biodiversity, Forests, Iran, Trees, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%