- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023Publisher:MDPI AG Manuel Siegl; Manuel Kämpf; Dominik Geier; Björn Andreeßen; Sebastian Max; Michael Zavrel; Thomas Becker;A soft sensor concept is typically developed and calibrated for individual bioprocesses in a time-consuming manual procedure. Following that, the prediction performance of these soft sensors degrades over time, due to changes in raw materials, biological variability, and modified process strategies. Through automatic adaptation and recalibration, adaptive soft sensor concepts have the potential to generalize soft sensor principles and make them applicable across bioprocesses. In this study, a new generalized adaptation algorithm for soft sensors is developed to provide phase-dependent recalibration of soft sensors based on multiway principal component analysis, a similarity analysis, and robust, generalist phase detection in multiphase bioprocesses. This generalist soft sensor concept was evaluated in two multiphase bioprocesses with various target values, media, and microorganisms. Consequently, the soft sensor concept was tested for biomass prediction in a Pichia pastoris process, and biomass and protein prediction in a Bacillus subtilis process, where the process characteristics (cultivation media and cultivation strategy) were varied. High prediction performance was demonstrated for P. pastoris processes (relative error = 6.9%) as well as B. subtilis processes in two different media during batch and fed-batch phases (relative errors in optimized high-performance medium: biomass prediction = 12.2%, protein prediction = 7.2%; relative errors in standard medium: biomass prediction = 12.8%, protein prediction = 8.8%).
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023Publisher:MDPI AG Manuel Siegl; Manuel Kämpf; Dominik Geier; Björn Andreeßen; Sebastian Max; Michael Zavrel; Thomas Becker;A soft sensor concept is typically developed and calibrated for individual bioprocesses in a time-consuming manual procedure. Following that, the prediction performance of these soft sensors degrades over time, due to changes in raw materials, biological variability, and modified process strategies. Through automatic adaptation and recalibration, adaptive soft sensor concepts have the potential to generalize soft sensor principles and make them applicable across bioprocesses. In this study, a new generalized adaptation algorithm for soft sensors is developed to provide phase-dependent recalibration of soft sensors based on multiway principal component analysis, a similarity analysis, and robust, generalist phase detection in multiphase bioprocesses. This generalist soft sensor concept was evaluated in two multiphase bioprocesses with various target values, media, and microorganisms. Consequently, the soft sensor concept was tested for biomass prediction in a Pichia pastoris process, and biomass and protein prediction in a Bacillus subtilis process, where the process characteristics (cultivation media and cultivation strategy) were varied. High prediction performance was demonstrated for P. pastoris processes (relative error = 6.9%) as well as B. subtilis processes in two different media during batch and fed-batch phases (relative errors in optimized high-performance medium: biomass prediction = 12.2%, protein prediction = 7.2%; relative errors in standard medium: biomass prediction = 12.8%, protein prediction = 8.8%).
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023Publisher:MDPI AG Manuel Siegl; Manuel Kämpf; Dominik Geier; Björn Andreeßen; Sebastian Max; Michael Zavrel; Thomas Becker;A soft sensor concept is typically developed and calibrated for individual bioprocesses in a time-consuming manual procedure. Following that, the prediction performance of these soft sensors degrades over time, due to changes in raw materials, biological variability, and modified process strategies. Through automatic adaptation and recalibration, adaptive soft sensor concepts have the potential to generalize soft sensor principles and make them applicable across bioprocesses. In this study, a new generalized adaptation algorithm for soft sensors is developed to provide phase-dependent recalibration of soft sensors based on multiway principal component analysis, a similarity analysis, and robust, generalist phase detection in multiphase bioprocesses. This generalist soft sensor concept was evaluated in two multiphase bioprocesses with various target values, media, and microorganisms. Consequently, the soft sensor concept was tested for biomass prediction in a Pichia pastoris process, and biomass and protein prediction in a Bacillus subtilis process, where the process characteristics (cultivation media and cultivation strategy) were varied. High prediction performance was demonstrated for P. pastoris processes (relative error = 6.9%) as well as B. subtilis processes in two different media during batch and fed-batch phases (relative errors in optimized high-performance medium: biomass prediction = 12.2%, protein prediction = 7.2%; relative errors in standard medium: biomass prediction = 12.8%, protein prediction = 8.8%).
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023Publisher:MDPI AG Manuel Siegl; Manuel Kämpf; Dominik Geier; Björn Andreeßen; Sebastian Max; Michael Zavrel; Thomas Becker;A soft sensor concept is typically developed and calibrated for individual bioprocesses in a time-consuming manual procedure. Following that, the prediction performance of these soft sensors degrades over time, due to changes in raw materials, biological variability, and modified process strategies. Through automatic adaptation and recalibration, adaptive soft sensor concepts have the potential to generalize soft sensor principles and make them applicable across bioprocesses. In this study, a new generalized adaptation algorithm for soft sensors is developed to provide phase-dependent recalibration of soft sensors based on multiway principal component analysis, a similarity analysis, and robust, generalist phase detection in multiphase bioprocesses. This generalist soft sensor concept was evaluated in two multiphase bioprocesses with various target values, media, and microorganisms. Consequently, the soft sensor concept was tested for biomass prediction in a Pichia pastoris process, and biomass and protein prediction in a Bacillus subtilis process, where the process characteristics (cultivation media and cultivation strategy) were varied. High prediction performance was demonstrated for P. pastoris processes (relative error = 6.9%) as well as B. subtilis processes in two different media during batch and fed-batch phases (relative errors in optimized high-performance medium: biomass prediction = 12.2%, protein prediction = 7.2%; relative errors in standard medium: biomass prediction = 12.8%, protein prediction = 8.8%).
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23042178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu