- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yitong Shao; Yongsheng Fu; Yangwu Chen; Abdelfatah Abomohra; Qi He; Wenjie Jin; Jian Liu; Zhouliang Tan; Xin Li;pmid: 35752308
In this study, Auxenochlorella protothecoides (AP-CK) was selected due to its reported high growth potential in sterilized black and odorous water (SBOW). In order to improve the resource utilization level of microalgae for wastewater treatment, AP-CK was mutated using 12C6+ heavy-ion beam irradiation, and a high lipid-containing mutant (AP-34#) was isolated and further evaluated to treat original black and odorous water (OBOW). Compared with the wild type, the maximum removal rates of COD, NH4+-N and TP of the mutant increased by 8.12 ± 0.33%, 10.43 ± 0.54% and 11.97 ± 0.16%, respectively, while maximum dissolved oxygen content increased from 0 to 4.36 ± 0.25 mg/L. Besides, the mutant lipid yield increased by 115.87 ± 3.22% over the wild type in OBOW. The fatty acid profile of AP-34# grown in SBOW and OBOW showed higher proportion of saturated fatty acids (C16:0 and C18:0) and valuable polyunsaturated fatty acids (mainly C20:5n3 and C22:6n3) which are more suitable for biodiesel production and value-added products, respectively. This work provides a new perspective on improving the characteristics of microalgae and an innovative approach for resource-based microalgae wastewater treatment through bioremediation of black and odorous water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Xin Li; Jian Liu; Jiansong Tian; Zhicheng Pan; Yangwu Chen; Fei Ming; Rui Wang; Lin Wang; Houzhen Zhou; Junjie Li; Zhouliang Tan;pmid: 36774984
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yitong Shao; Yongsheng Fu; Yangwu Chen; Abdelfatah Abomohra; Qi He; Wenjie Jin; Jian Liu; Zhouliang Tan; Xin Li;pmid: 35752308
In this study, Auxenochlorella protothecoides (AP-CK) was selected due to its reported high growth potential in sterilized black and odorous water (SBOW). In order to improve the resource utilization level of microalgae for wastewater treatment, AP-CK was mutated using 12C6+ heavy-ion beam irradiation, and a high lipid-containing mutant (AP-34#) was isolated and further evaluated to treat original black and odorous water (OBOW). Compared with the wild type, the maximum removal rates of COD, NH4+-N and TP of the mutant increased by 8.12 ± 0.33%, 10.43 ± 0.54% and 11.97 ± 0.16%, respectively, while maximum dissolved oxygen content increased from 0 to 4.36 ± 0.25 mg/L. Besides, the mutant lipid yield increased by 115.87 ± 3.22% over the wild type in OBOW. The fatty acid profile of AP-34# grown in SBOW and OBOW showed higher proportion of saturated fatty acids (C16:0 and C18:0) and valuable polyunsaturated fatty acids (mainly C20:5n3 and C22:6n3) which are more suitable for biodiesel production and value-added products, respectively. This work provides a new perspective on improving the characteristics of microalgae and an innovative approach for resource-based microalgae wastewater treatment through bioremediation of black and odorous water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Xin Li; Jian Liu; Jiansong Tian; Zhicheng Pan; Yangwu Chen; Fei Ming; Rui Wang; Lin Wang; Houzhen Zhou; Junjie Li; Zhouliang Tan;pmid: 36774984
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu