- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Abdul Gani Abdul Jameel;
Ali Al-Muslem;Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREAwad B. S. Alquaity;
+2 AuthorsAwad B. S. Alquaity
Awad B. S. Alquaity in OpenAIREAbdul Gani Abdul Jameel;
Ali Al-Muslem;Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREAwad B. S. Alquaity;
Awad B. S. Alquaity
Awad B. S. Alquaity in OpenAIREUmer Zahid;
Umer Zahid
Umer Zahid in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREdoi: 10.3390/pr10112384
The present work discusses the development and application of a machine-learning-based model to predict the enthalpy of combustion of various oxygenated fuels of interest. A detailed dataset containing 207 pure compounds and 38 surrogate fuels has been prepared, representing various chemical classes, namely paraffins, olefins, naphthenes, aromatics, alcohols, ethers, ketones, and aldehydes. The dataset was subsequently used for constructing an artificial neural network (ANN) model with 14 input layers, 26 hidden layers, and 1 output layer for predicting the enthalpy of combustion for various oxygenated fuels. The ANN model was trained using the collected dataset, validated, and finally tested to verify its accuracy in predicting the enthalpy of combustion. The results for various oxygenated fuels are discussed, especially in terms of the influence of different functional groups in shaping the enthalpy of combustion values. In predicting the enthalpy of combustion, 96.3% accuracy was achieved using the ANN model. The developed model can be successfully employed to predict the enthalpies of neat compounds and mixtures as the obtained percentage error of 4.2 is within the vicinity of experimental uncertainty.
Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/11/2384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10112384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/11/2384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10112384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Abdul Gani Abdul Jameel;
Ali Al-Muslem;Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREAwad B. S. Alquaity;
+2 AuthorsAwad B. S. Alquaity
Awad B. S. Alquaity in OpenAIREAbdul Gani Abdul Jameel;
Ali Al-Muslem;Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREAwad B. S. Alquaity;
Awad B. S. Alquaity
Awad B. S. Alquaity in OpenAIREUmer Zahid;
Umer Zahid
Umer Zahid in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREdoi: 10.3390/pr10112384
The present work discusses the development and application of a machine-learning-based model to predict the enthalpy of combustion of various oxygenated fuels of interest. A detailed dataset containing 207 pure compounds and 38 surrogate fuels has been prepared, representing various chemical classes, namely paraffins, olefins, naphthenes, aromatics, alcohols, ethers, ketones, and aldehydes. The dataset was subsequently used for constructing an artificial neural network (ANN) model with 14 input layers, 26 hidden layers, and 1 output layer for predicting the enthalpy of combustion for various oxygenated fuels. The ANN model was trained using the collected dataset, validated, and finally tested to verify its accuracy in predicting the enthalpy of combustion. The results for various oxygenated fuels are discussed, especially in terms of the influence of different functional groups in shaping the enthalpy of combustion values. In predicting the enthalpy of combustion, 96.3% accuracy was achieved using the ANN model. The developed model can be successfully employed to predict the enthalpies of neat compounds and mixtures as the obtained percentage error of 4.2 is within the vicinity of experimental uncertainty.
Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/11/2384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10112384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/11/2384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10112384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors:Ali A. Al-Qadri;
Ali A. Al-Qadri
Ali A. Al-Qadri in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
+3 AuthorsNabeel Ahmad
Nabeel Ahmad in OpenAIREAli A. Al-Qadri;
Ali A. Al-Qadri
Ali A. Al-Qadri in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Umer Zahid;Nabeel Ahmad
Nabeel Ahmad in OpenAIRESharif H. Zein;
Salman Raza Naqvi;Sharif H. Zein
Sharif H. Zein in OpenAIREThis study has been dedicated towards the conversion of plastics to methanol and hydrogen. The base design (case 1) represents the conventional design for producing syngas via steam gasification of waste plastics followed by CO2 and H₂S removal. The syngas then processed in the methanol synthesis reactor to produce methanol, whereas, the remaining unconverted gases are processed in water gas shift reactors to produce hydrogen. On the other hand, an alternative design (case 2) has been also developed with an aim to increase the H2 and methanol production, which integrates the plastic gasification and the methane reforming units to utilize the high energy stream from gasification unit to heat up the feed stream of reforming unit. Both the cases have been techno-economically compared to evaluate the process feasibility. The comparative analysis revealed that case 2 outperforms the case 1 in terms of both process efficiency and economics.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors:Ali A. Al-Qadri;
Ali A. Al-Qadri
Ali A. Al-Qadri in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
+3 AuthorsNabeel Ahmad
Nabeel Ahmad in OpenAIREAli A. Al-Qadri;
Ali A. Al-Qadri
Ali A. Al-Qadri in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Umer Zahid;Nabeel Ahmad
Nabeel Ahmad in OpenAIRESharif H. Zein;
Salman Raza Naqvi;Sharif H. Zein
Sharif H. Zein in OpenAIREThis study has been dedicated towards the conversion of plastics to methanol and hydrogen. The base design (case 1) represents the conventional design for producing syngas via steam gasification of waste plastics followed by CO2 and H₂S removal. The syngas then processed in the methanol synthesis reactor to produce methanol, whereas, the remaining unconverted gases are processed in water gas shift reactors to produce hydrogen. On the other hand, an alternative design (case 2) has been also developed with an aim to increase the H2 and methanol production, which integrates the plastic gasification and the methane reforming units to utilize the high energy stream from gasification unit to heat up the feed stream of reforming unit. Both the cases have been techno-economically compared to evaluate the process feasibility. The comparative analysis revealed that case 2 outperforms the case 1 in terms of both process efficiency and economics.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Authors: Faisal Abnisa; Wan Mohd Ashri Wan Daud;Nabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREdoi: 10.1039/c6ra09085k
Natural rubber is a tropical plantation crop that mainly consists of polyisoprene (cis-1,4-polyisoprene). It can be converted into fuels and other useful chemical commodities by depolymerization processes, with the hydrous pyrolysis being the most cost-effective.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra09085k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra09085k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Authors: Faisal Abnisa; Wan Mohd Ashri Wan Daud;Nabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREdoi: 10.1039/c6ra09085k
Natural rubber is a tropical plantation crop that mainly consists of polyisoprene (cis-1,4-polyisoprene). It can be converted into fuels and other useful chemical commodities by depolymerization processes, with the hydrous pyrolysis being the most cost-effective.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra09085k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra09085k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Ammr M. Khurmy;
Ahmad Al Harbi;Ammr M. Khurmy
Ammr M. Khurmy in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
+1 AuthorsNabeel Ahmad
Nabeel Ahmad in OpenAIREAmmr M. Khurmy;
Ahmad Al Harbi;Ammr M. Khurmy
Ammr M. Khurmy in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREdoi: 10.3390/su152115362
Environmental concerns surrounding the use of high-sulfur fuel oil (HFO), a marine fuel derived from refinery vacuum residue, motivate the exploration of alternative solutions. Burning high-sulfur fuel oil (HFO) is a major source of air pollution, acid rain, ocean acidification, and climate change. When HFO is burned, it releases sulfur dioxide (SO2) into the air, a harmful gas that can cause respiratory problems, heart disease, and cancer. SO2 emissions can also contribute to acid rain, which can damage forests and lakes. Several countries and international organizations have taken steps to reduce HFO emissions from ships. For example, the International Maritime Organization (IMO) has implemented a global sulfur cap for marine fuels, which limits the sulfur content of fuel to 0.5% by mass. In addition, there is a worldwide effort to encourage the use of low-carbon gases to help reduce greenhouse gas (GHG) emissions. There are several alternative fuels that can be used in ships instead of HFO, such as liquefied natural gas (LNG), methanol, and hydrogen. These fuels are cleaner and more environmentally friendly than HFO. The aim of this study is to develop a process integration framework to co-produce methanol and hydrogen from vacuum residue while minimizing the sulfur and carbon emissions. Two process models have been developed in this study to produce methanol and hydrogen from vacuum residue. In case 1, vacuum residue is gasified using oxygen—steam and the syngas leaving the gasifier is processed to produce both methanol and hydrogen. Case 2 shares the same process model as case 1 except it is concentrated on mainly methanol production from vacuum residue. Both models are techno-economically compared in terms of methanol and H2 production rates, specific energy requirements, carbon conversion, CO2 specific emissions, overall process efficiencies, and project feasibility while considering the fluctuation of vacuum residue feed price from 0.022 $/kg to 0.11 $/kg. The comparative analysis showed that case 2 offers an 86.01% lower specific energy requirement (GJ) for each kilogram (kg) of fuel produced. The CO2 specific emission also decreased in case 2 by 69.76% compared to case 1. In addition, the calculated total net fuel production cost is 0.453 $/kg and 0.223 $/kg at 0.066 $/kg for case 1 and 2, respectively. Overall, case 2 exhibits better project feasibility compared to case 1 with higher process performance and lower production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152115362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152115362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Ammr M. Khurmy;
Ahmad Al Harbi;Ammr M. Khurmy
Ammr M. Khurmy in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
+1 AuthorsNabeel Ahmad
Nabeel Ahmad in OpenAIREAmmr M. Khurmy;
Ahmad Al Harbi;Ammr M. Khurmy
Ammr M. Khurmy in OpenAIREAbdul Gani Abdul Jameel;
Abdul Gani Abdul Jameel
Abdul Gani Abdul Jameel in OpenAIRENabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREdoi: 10.3390/su152115362
Environmental concerns surrounding the use of high-sulfur fuel oil (HFO), a marine fuel derived from refinery vacuum residue, motivate the exploration of alternative solutions. Burning high-sulfur fuel oil (HFO) is a major source of air pollution, acid rain, ocean acidification, and climate change. When HFO is burned, it releases sulfur dioxide (SO2) into the air, a harmful gas that can cause respiratory problems, heart disease, and cancer. SO2 emissions can also contribute to acid rain, which can damage forests and lakes. Several countries and international organizations have taken steps to reduce HFO emissions from ships. For example, the International Maritime Organization (IMO) has implemented a global sulfur cap for marine fuels, which limits the sulfur content of fuel to 0.5% by mass. In addition, there is a worldwide effort to encourage the use of low-carbon gases to help reduce greenhouse gas (GHG) emissions. There are several alternative fuels that can be used in ships instead of HFO, such as liquefied natural gas (LNG), methanol, and hydrogen. These fuels are cleaner and more environmentally friendly than HFO. The aim of this study is to develop a process integration framework to co-produce methanol and hydrogen from vacuum residue while minimizing the sulfur and carbon emissions. Two process models have been developed in this study to produce methanol and hydrogen from vacuum residue. In case 1, vacuum residue is gasified using oxygen—steam and the syngas leaving the gasifier is processed to produce both methanol and hydrogen. Case 2 shares the same process model as case 1 except it is concentrated on mainly methanol production from vacuum residue. Both models are techno-economically compared in terms of methanol and H2 production rates, specific energy requirements, carbon conversion, CO2 specific emissions, overall process efficiencies, and project feasibility while considering the fluctuation of vacuum residue feed price from 0.022 $/kg to 0.11 $/kg. The comparative analysis showed that case 2 offers an 86.01% lower specific energy requirement (GJ) for each kilogram (kg) of fuel produced. The CO2 specific emission also decreased in case 2 by 69.76% compared to case 1. In addition, the calculated total net fuel production cost is 0.453 $/kg and 0.223 $/kg at 0.066 $/kg for case 1 and 2, respectively. Overall, case 2 exhibits better project feasibility compared to case 1 with higher process performance and lower production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152115362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152115362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Usama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREUmer Zahid;
Sagheer Onaizi;Umer Zahid
Umer Zahid in OpenAIREAbdul Abdul Jameel;
+3 AuthorsAbdul Abdul Jameel
Abdul Abdul Jameel in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREUmer Zahid;
Sagheer Onaizi;Umer Zahid
Umer Zahid in OpenAIREAbdul Abdul Jameel;
Nauman Ahmad;Abdul Abdul Jameel
Abdul Abdul Jameel in OpenAIRENabeel Ahmad;
Hamad AlMohamadi;Nabeel Ahmad
Nabeel Ahmad in OpenAIREdoi: 10.3390/app11146577
With the increase in global energy requirements, the utilization of fossil fuels has also increased, which has caused global warming. In this study, a process integration framework based on an energy mix system is proposed to simultaneously produce two cleaner fuels (methanol and H2). Aspen Plus is used to develop process models followed by their techno-economic assessment. Case 1 is considered the base case process, where the coal–biomass gasification process is used to produce the synthesis gas, which is further converted into H2 and methanol. Conversely, the case 2 design represents the novel process configuration framework, where the coal–biomass gasification technology in case 1 is sequentially integrated with the methane reforming technology to minimize the energy penalties while increasing the net fuel production. To perform the technical analysis, the fuel production rates, carbon conversion efficiencies and specific energy requirements are compared for both models. It is analyzed from the results that the case 2 design offers higher methanol and H2 production rates with lower energy requirements. Additionally, the specific energy requirement for case 2 is 29% lower compared to the case 1 design, leading to an increase in the process efficiency of case 2 by 3.5%.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/14/6577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11146577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/14/6577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11146577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Usama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREUmer Zahid;
Sagheer Onaizi;Umer Zahid
Umer Zahid in OpenAIREAbdul Abdul Jameel;
+3 AuthorsAbdul Abdul Jameel
Abdul Abdul Jameel in OpenAIREUsama Ahmed;
Usama Ahmed
Usama Ahmed in OpenAIREUmer Zahid;
Sagheer Onaizi;Umer Zahid
Umer Zahid in OpenAIREAbdul Abdul Jameel;
Nauman Ahmad;Abdul Abdul Jameel
Abdul Abdul Jameel in OpenAIRENabeel Ahmad;
Hamad AlMohamadi;Nabeel Ahmad
Nabeel Ahmad in OpenAIREdoi: 10.3390/app11146577
With the increase in global energy requirements, the utilization of fossil fuels has also increased, which has caused global warming. In this study, a process integration framework based on an energy mix system is proposed to simultaneously produce two cleaner fuels (methanol and H2). Aspen Plus is used to develop process models followed by their techno-economic assessment. Case 1 is considered the base case process, where the coal–biomass gasification process is used to produce the synthesis gas, which is further converted into H2 and methanol. Conversely, the case 2 design represents the novel process configuration framework, where the coal–biomass gasification technology in case 1 is sequentially integrated with the methane reforming technology to minimize the energy penalties while increasing the net fuel production. To perform the technical analysis, the fuel production rates, carbon conversion efficiencies and specific energy requirements are compared for both models. It is analyzed from the results that the case 2 design offers higher methanol and H2 production rates with lower energy requirements. Additionally, the specific energy requirement for case 2 is 29% lower compared to the case 1 design, leading to an increase in the process efficiency of case 2 by 3.5%.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/14/6577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11146577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/14/6577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11146577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu