- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Royal Society Authors: Lee E. Brown; Daniel M. Perkins; Guy Woodward;Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,007 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Leeds-2012-DTG-Funding 14...UKRI| Leeds-2012-DTG-Funding 14 StudenshipsLee, E; Carrivick, JL; Quincey, DJ; Cook, SJ; James, WHM; Brown, LE;AbstractHimalayan glaciers are undergoing rapid mass loss but rates of contemporary change lack long-term (centennial-scale) context. Here, we reconstruct the extent and surfaces of 14,798 Himalayan glaciers during the Little Ice Age (LIA), 400 to 700 years ago. We show that they have lost at least 40 % of their LIA area and between 390 and 586 km3 of ice; 0.92 to 1.38 mm Sea Level Equivalent. The long-term rate of ice mass loss since the LIA has been between − 0.011 and − 0.020 m w.e./year, which is an order of magnitude lower than contemporary rates reported in the literature. Rates of mass loss depend on monsoon influence and orographic effects, with the fastest losses measured in East Nepal and in Bhutan north of the main divide. Locally, rates of loss were enhanced with the presence of surface debris cover (by 2 times vs clean-ice) and/or a proglacial lake (by 2.5 times vs land-terminating). The ten-fold acceleration in ice loss we have observed across the Himalaya far exceeds any centennial-scale rates of change that have been recorded elsewhere in the world.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-03805-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-03805-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United Kingdom, Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | ACQWAEC| ACQWALee E. Brown; Emmanuel Castella; M. Hill Clarvis; Alexander M. Milner; Alexander M. Milner; Kieran Khamis; David M. Hannah;Freshwater ecosystems are often of high conservation value, yet many have been degraded significantly by direct anthropogenic impacts and are further threatened by global environmental change. Traditionally, conservation science and policy has promoted principles based on preservation and restoration paradigms, which are linked to assumptions of stationarity and uniformitarianism. Adaptation requires new approaches based on flexibility, iterativity, non-linearity, and redundancy. Many high alpine river networks represent near natural, pristine river systems and important biodiversity 'hotspots' of European freshwater fauna. However, there remains a lack of guidance on alpine river conservation strategies under a changing climate at EU, regional and local levels. A critical evaluation of current conservation and adaptation principles and governance frameworks was undertaken with relation to predicted climate change impacts on freshwater ecosystems. Case studies are presented from two alpine zones in mainland Europe (the Pyrénées and the Swiss Alps). The complexity of climate change impacts on hydrological regimes, habitat and biota from both case study regions suggests that current legislative and policy mechanisms, which frame conservation approaches, need to be realigned. In particular, a shift in focus from species-centric approaches to more holistic ecosystem functioning conservation is proposed. A methodological approach is set out that may help conservationists and resource managers to both prioritise their efforts, and better predict future habitat and biotic responses to set ecological baseline conditions. Due to the complexity and limited potential for preventative intervention in these systems, conservation strategies should focus on: (i) the maintenance and enhancement of connectivity within and between alpine river basins and (ii) the control and reduction of additional anthropogenic stressors.
CORE arrow_drop_down Environmental Science & PolicyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2013.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Environmental Science & PolicyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2013.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016 Spain, United KingdomPublisher:The Royal Society Funded by:UKRI | Assessing the effects of ..., UKRI | Can metabolic traits limi..., UKRI | Evolution of NITrogen BUF... +1 projectsUKRI| Assessing the effects of EXtreme summer flooding on STREAM ecosystem successional processes (EXSTREAM). ,UKRI| Can metabolic traits limit species invasions under climate change? ,UKRI| Evolution of NITrogen BUFFERing capacity of land water interfaces along hydrosystems of different age (NITBUFFER) ,UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET)Woodward, G; Bonada, N; Brown, LE; Death, RG; Durance, I; Gray, C; Hladyz, S; Ledger, ME; Milner, AM; Ormerod, SJ; Thompson, RM; Pawar, S;Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with highper capitametabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/30891Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2016License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 157 citations 157 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 68visibility views 68 download downloads 40 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/30891Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2016License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Wiley Funded by:UKRI | The influence of major FL..., UKRI | The influence of major FL..., UKRI | The influence of major FL...UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET) ,UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET). ,UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET)Lee E. Brown; Alexander M. Milner; Alexander M. Milner; Leonie R. Clitherow; Megan Klaar; Lawrence J. B. Eagle; Anne L. Robertson; Jessica L. Picken; Jessica L. Picken;AbstractFloods have a major influence in structuring river ecosystems. Considering projected increases in high‐magnitude rainfall events with climate change, major flooding events are expected to increase in many regions of the world. However, there is uncertainty about the effect of different flooding regimes and the importance of flood timing in structuring riverine habitats and their associated biotic communities. In addition, our understanding of community response is hindered by a lack of long‐term datasets to evaluate river ecosystem resilience to flooding. Here we show that in a river ecosystem studied for 30 years, a major winter flood reset the invertebrate community to a community similar to one that existed 15 years earlier. The community had not recovered to the preflood state when recurrent summer flooding 9 years later reset the ecosystem back to an even earlier community. Total macroinvertebrate density was reduced in the winter flood by an order of magnitude more than the summer flood. Meiofaunal invertebrates were more resilient to the flooding than macroinvertebrates, possibly due to their smaller body size facilitating greater access to in‐stream refugia. Pacific pink salmon escapement was markedly affected by the winter flood when eggs were developing in redds, compared to summer flooding, which occurred before the majority of eggs were laid. Our findings inform a proposed conceptual model of three possible responses to flooding by the invertebrate community in terms of switching to different states and effects on resilience to future flooding events. In a changing climate, understanding these responses is important for river managers to mitigate the biological impacts of extreme flooding effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:The Royal Society Funded by:UKRI | Predictable feedbacks bet..., UKRI | Synchrony in metapopulati...UKRI| Predictable feedbacks between warming, community structure and ecosystem functioning: a combined experimental and theoretical approach ,UKRI| Synchrony in metapopulations at multiple time scales: theory, experiments, and field dataDaniel C. Reuman; Daniel C. Reuman; Alexander M. Milner; Alexander M. Milner; Mark E. Ledger; Lee E. Brown; Lee E. Brown; Lawrence N. Hudson; Guy Woodward; Francois Edwards;Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size–scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts.
NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2012.0245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2012.0245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Wiley Funded by:UKRI | EMBER: Effects of Moorlan...UKRI| EMBER: Effects of Moorland Burning on the Ecohydrology of River basinsLee E. Brown; Katie L. Aspray; Mark E. Ledger; Chris Mainstone; Sheila M. Palmer; Martin Wilkes; Joseph Holden;AbstractLand use and climate change are driving widespread modifications to the biodiverse and functionally unique headwaters of rivers. In temperate and boreal regions, many headwaters drain peatlands where land management and climate change can cause significant soil erosion and peat deposition in rivers. However, effects of peat deposition in river ecosystems remain poorly understood. We provide two lines of evidence—derived from sediment deposition gradients in experimental mesocosms (0–7.5 g/m2) and headwaters (0.82–9.67 g/m2)—for the adverse impact of peat deposition on invertebrate community biodiversity. We found a consistent negative effect of sediment deposition across both the experiment and survey; at the community level, decreases in density (1956 to 56 individuals per m2 in headwaters; mean 823 ± 129 (SE) to 288 ± 115 individuals per m2 in mesocosms) and richness (mean 12 ± 1 to 6 ± 2 taxa in mesocosms) were observed. Sedimentation increased beta diversity amongst experimental replicates and headwaters, reflecting increasing stochasticity amongst tolerant groups in sedimented habitats. With increasing sedimentation, the density of the most common species, Leuctra inermis, declined from 290 ± 60 to 70 ± 30 individuals/m2 on average in mesocosms and >800 individuals/m2 to 0 in the field survey. Traits analysis of mesocosm assemblages suggested biodiversity loss was driven by decreasing abundance of invertebrates with trait combinations sensitive to sedimentation (longer life cycles, active aquatic dispersal of larvae, fixed aquatic eggs, shredding feeding habit). Functional diversity metrics reinforced the idea of more stochastic community assembly under higher sedimentation rates. While mesocosm assemblages showed some compositional differences to surveyed headwaters, ecological responses were consistent across these spatial scales. Our results suggest short‐term, small‐scale stressor experiments can inform understanding of “real‐world” peatland river ecosystems. As climate change and land‐use change are expected to enhance peatland erosion, significant alterations to invertebrate biodiversity can be expected where these eroded soils are deposited in rivers.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | NERC Science @ Leeds and ...UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES)Daniel Kenna; William N. W. Fincham; Alison M. Dunn; Lee E. Brown; Christopher Hassall;Global biodiversity is threatened by multiple anthropogenic stressors but little is known about the combined effects of environmental warming and invasive species on ecosystem functioning. We quantified thermal preferences and then compared leaf-litter processing rates at eight different temperatures (5.0-22.5 °C) by the invasive freshwater crustacean Dikerogammarus villosus and the Great Britain native Gammarus pulex at a range of body sizes. D. villosus preferred warmer temperatures but there was considerable overlap in the range of temperatures that the two species occupied during preference trials. When matched for size, G. pulex had a greater leaf shredding efficiency than D. villosus, suggesting that invasion and subsequent displacement of the native amphipod will result in reduced ecosystem functioning. However, D. villosus is an inherently larger species and interspecific variation in shredding was reduced when animals of a representative size range were compared. D. villosus shredding rates increased at a faster rate than G. pulex with increasing temperature suggesting that climate change may offset some of the reduction in function. D. villosus, but not G. pulex, showed evidence of an ability to select those temperatures at which its shredding rate was maximised, and the activation energy for shredding in D. villosus was more similar to predictions from metabolic theory. While per capita and mass-corrected shredding rates were lower in the invasive D. villosus than the native G. pulex, our study provides novel insights in to how the interactive effects of metabolic function, body size, behavioural thermoregulation, and density produce antagonistic effects between anthropogenic stressors.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/69282Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3796-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/69282Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3796-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:UKRI | NERC Science @ Leeds and ...UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES)Sarah C. Fell; Jonathan L. Carrivick; Martyn G. Kelly; Leopold Füreder; Lee E. Brown;doi: 10.1111/gcb.14454
pmid: 30230660
AbstractClimate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold‐water river systems that are responding rapidly to a shrinking cryosphere. Most recent research has demonstrated the severe vulnerability of river invertebrates to glacier retreat but effects upon other aquatic groups remain poorly quantified. Using new data sets from the European Alps, we show significant responses to declining glacier cover for diatoms, which play a critical functional role as freshwater primary producers. Specifically, diatom α‐diversity and density in rivers presently fed by glaciers will increase with future deglaciation, yet β‐diversity within and between sites will reduce because declining glacier influence will lower the spatiotemporal variability of glacier cover and its associated habitat heterogeneity. Changes in diatom assemblage composition as glacier cover declined were associated strongly with increasing riverbed stability and water temperature. At the species level, diatoms showed a gradation of responses; for example, Eunotia trinacria, found exclusively at river sites with high (≥52%) catchment glacier cover, may be affected negatively by ice loss. Conversely, seven taxa confined to sites with no glacier cover, including Gomphonema calcareum, stand to benefit. Nineteen (22%) taxa were noted as threatened, endangered, rare or decreasing on the Red List of Algae for Germany, with most at sites ≤26% glacier cover, meaning further ice loss may benefit these diatoms. However, six taxa found only in rivers ≥28% glacier cover may require reclassification of their Red List conservation status, as this habitat is threatened by deglaciation. Our identification of clear links between decreasing glacier cover and river diatom biodiversity suggests there could be significant reorganization of river ecosystems with deglaciation, for example, through alterations to primary production, biogeochemical cycles, and the shifting resource base of alpine freshwater food webs which lack significant allochthonous energy inputs.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | INTERACT, UKRI | NERC Science @ Leeds and ..., UKRI | Impacts of global warming...EC| INTERACT ,UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES) ,UKRI| Impacts of global warming in sentinel systems: from genes to ecosystemsAuthors: Fell, Sarah; Carrivick, Jonathan; Cauvy-Fraunié, Sophie; Crespo-Pérez, Verónica; +6 AuthorsFell, Sarah; Carrivick, Jonathan; Cauvy-Fraunié, Sophie; Crespo-Pérez, Verónica; Hood, Eran; Randall, Kate; Nicholass, Kirsty; Tiegs, Scott; Dumbrell, Alex; Brown, Lee;Le changement climatique modifie la structure et le fonctionnement des écosystèmes fluviaux dans le monde entier. Dans les rivières de montagne, il a été démontré que le recul des glaciers entraînait des changements systématiques dans la biodiversité des invertébrés aquatiques, mais les effets de la perte de glace sur d'autres taxons biologiques et sur les fonctions de l'ensemble de l'écosystème sont moins bien compris. En utilisant des données provenant de rivières de montagne couvrant six pays sur quatre continents, nous montrons que la diminution de la couverture glaciaire entraîne une augmentation constante du taux de décomposition de la cellulose, le polymère organique le plus abondant au monde. Les taux de décomposition de la cellulose ont été associés à une plus grande abondance de champignons aquatiques et du gène Cellobiohydrolase I (cbhI) dégradant la cellulose fongique, illustrant le potentiel de prédiction des fonctions au niveau de l'écosystème à partir des données au niveau du gène. Des associations claires entre les gènes fongiques, les populations et les communautés et le fonctionnement des écosystèmes dans les rivières de montagne indiquent que l'on peut s'attendre à ce que les diminutions mondiales continues de la couverture glaciaire modifient les fonctions vitales des écosystèmes, y compris les processus du cycle du carbone. L'impact du recul des glaciers sur la décomposition provoquée par les champignons dans les rivières est étudié à l'aide d'un test standardisé dans six pays. Moins de couverture glaciaire est liée à une décomposition accrue, qui est à son tour associée à une plus grande abondance de champignons et d'un gène de dégradation de la cellulose fongique, cbhI. El cambio climático está alterando la estructura y el funcionamiento de los ecosistemas fluviales en todo el mundo. En los ríos de montaña, se ha demostrado que el retroceso de los glaciares produce cambios sistemáticos en la biodiversidad de invertebrados acuáticos, pero los efectos de la pérdida de hielo en otros taxones biológicos y en las funciones de todo el ecosistema son menos conocidos. Utilizando datos de ríos de montaña que abarcan seis países en cuatro continentes, mostramos que la disminución de la cobertura de los glaciares conduce a aumentos constantes impulsados por hongos en la tasa de descomposición de la celulosa, el polímero orgánico más abundante del mundo. Las tasas de descomposición de la celulosa se asociaron con una mayor abundancia de hongos acuáticos y el gen de la celobiohidrolasa I (cbhI) que degrada la celulosa fúngica, lo que ilustra el potencial para predecir las funciones a nivel del ecosistema a partir de datos a nivel de genes. Las asociaciones claras entre los genes, las poblaciones y las comunidades de hongos y el funcionamiento de los ecosistemas en los ríos de montaña indican que se puede esperar que las disminuciones globales en curso en la cobertura de los glaciares cambien las funciones vitales de los ecosistemas, incluidos los procesos del ciclo del carbono. El impacto del retroceso de los glaciares en la descomposición causada por hongos en los ríos se investiga mediante una prueba estandarizada en seis países. Una menor cobertura de glaciares está relacionada con una mayor descomposición, que a su vez se asocia con una mayor abundancia de hongos y un gen fúngico que degrada la celulosa, cbhI. Climate change is altering the structure and functioning of river ecosystems worldwide. In mountain rivers, glacier retreat has been shown to result in systematic changes in aquatic invertebrate biodiversity, but the effects of ice loss on other biological taxa and on whole-ecosystem functions are less well understood. Using data from mountain rivers spanning six countries on four continents, we show that decreasing glacier cover leads to consistent fungal-driven increases in the decomposition rate of cellulose, the world's most abundant organic polymer. Cellulose decomposition rates were associated with greater abundance of aquatic fungi and the fungal cellulose-degrading Cellobiohydrolase I (cbhI) gene, illustrating the potential for predicting ecosystem-level functions from gene-level data. Clear associations between fungal genes, populations and communities and ecosystem functioning in mountain rivers indicate that ongoing global decreases in glacier cover can be expected to change vital ecosystem functions, including carbon cycle processes. The impact of glacier retreat on fungal-driven decomposition in rivers is investigated using a standardized test across six countries. Less glacier cover is linked to increased decomposition, which is in turn associated with a greater abundance of fungi and a fungal cellulose-degrading gene, cbhI. يؤدي تغير المناخ إلى تغيير هيكل وأداء النظم الإيكولوجية النهرية في جميع أنحاء العالم. في الأنهار الجبلية، ثبت أن تراجع الأنهار الجليدية يؤدي إلى تغيرات منهجية في التنوع البيولوجي للافقاريات المائية، ولكن آثار فقدان الجليد على الأصناف البيولوجية الأخرى وعلى وظائف النظام البيئي بأكمله غير مفهومة جيدًا. باستخدام البيانات من الأنهار الجبلية التي تمتد عبر ست دول في أربع قارات، نظهر أن تناقص الغطاء الجليدي يؤدي إلى زيادات ثابتة مدفوعة بالفطريات في معدل تحلل السليلوز، وهو البوليمر العضوي الأكثر وفرة في العالم. ارتبطت معدلات تحلل السليلوز بوفرة أكبر من الفطريات المائية وجين السليلوز المحلل للسليلوز I (cbhI)، مما يوضح إمكانية التنبؤ بوظائف مستوى النظام الإيكولوجي من البيانات على مستوى الجينات. تشير الارتباطات الواضحة بين الجينات الفطرية والسكان والمجتمعات ووظائف النظام الإيكولوجي في الأنهار الجبلية إلى أنه من المتوقع أن تؤدي الانخفاضات العالمية المستمرة في الغطاء الجليدي إلى تغيير وظائف النظام الإيكولوجي الحيوية، بما في ذلك عمليات دورة الكربون. يتم التحقيق في تأثير تراجع الأنهار الجليدية على التحلل الناجم عن الفطريات في الأنهار باستخدام اختبار موحد في ستة بلدان. يرتبط الغطاء الجليدي الأقل بزيادة التحلل، والذي يرتبط بدوره بوفرة أكبر من الفطريات وجين السليلوز الفطري المتحلل، cbhI.
CORE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03483668Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Essex Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01004-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03483668Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Essex Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01004-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Royal Society Authors: Lee E. Brown; Daniel M. Perkins; Guy Woodward;Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,007 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2010.0055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Leeds-2012-DTG-Funding 14...UKRI| Leeds-2012-DTG-Funding 14 StudenshipsLee, E; Carrivick, JL; Quincey, DJ; Cook, SJ; James, WHM; Brown, LE;AbstractHimalayan glaciers are undergoing rapid mass loss but rates of contemporary change lack long-term (centennial-scale) context. Here, we reconstruct the extent and surfaces of 14,798 Himalayan glaciers during the Little Ice Age (LIA), 400 to 700 years ago. We show that they have lost at least 40 % of their LIA area and between 390 and 586 km3 of ice; 0.92 to 1.38 mm Sea Level Equivalent. The long-term rate of ice mass loss since the LIA has been between − 0.011 and − 0.020 m w.e./year, which is an order of magnitude lower than contemporary rates reported in the literature. Rates of mass loss depend on monsoon influence and orographic effects, with the fastest losses measured in East Nepal and in Bhutan north of the main divide. Locally, rates of loss were enhanced with the presence of surface debris cover (by 2 times vs clean-ice) and/or a proglacial lake (by 2.5 times vs land-terminating). The ten-fold acceleration in ice loss we have observed across the Himalaya far exceeds any centennial-scale rates of change that have been recorded elsewhere in the world.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-03805-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-03805-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United Kingdom, Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | ACQWAEC| ACQWALee E. Brown; Emmanuel Castella; M. Hill Clarvis; Alexander M. Milner; Alexander M. Milner; Kieran Khamis; David M. Hannah;Freshwater ecosystems are often of high conservation value, yet many have been degraded significantly by direct anthropogenic impacts and are further threatened by global environmental change. Traditionally, conservation science and policy has promoted principles based on preservation and restoration paradigms, which are linked to assumptions of stationarity and uniformitarianism. Adaptation requires new approaches based on flexibility, iterativity, non-linearity, and redundancy. Many high alpine river networks represent near natural, pristine river systems and important biodiversity 'hotspots' of European freshwater fauna. However, there remains a lack of guidance on alpine river conservation strategies under a changing climate at EU, regional and local levels. A critical evaluation of current conservation and adaptation principles and governance frameworks was undertaken with relation to predicted climate change impacts on freshwater ecosystems. Case studies are presented from two alpine zones in mainland Europe (the Pyrénées and the Swiss Alps). The complexity of climate change impacts on hydrological regimes, habitat and biota from both case study regions suggests that current legislative and policy mechanisms, which frame conservation approaches, need to be realigned. In particular, a shift in focus from species-centric approaches to more holistic ecosystem functioning conservation is proposed. A methodological approach is set out that may help conservationists and resource managers to both prioritise their efforts, and better predict future habitat and biotic responses to set ecological baseline conditions. Due to the complexity and limited potential for preventative intervention in these systems, conservation strategies should focus on: (i) the maintenance and enhancement of connectivity within and between alpine river basins and (ii) the control and reduction of additional anthropogenic stressors.
CORE arrow_drop_down Environmental Science & PolicyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2013.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Environmental Science & PolicyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2013.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016 Spain, United KingdomPublisher:The Royal Society Funded by:UKRI | Assessing the effects of ..., UKRI | Can metabolic traits limi..., UKRI | Evolution of NITrogen BUF... +1 projectsUKRI| Assessing the effects of EXtreme summer flooding on STREAM ecosystem successional processes (EXSTREAM). ,UKRI| Can metabolic traits limit species invasions under climate change? ,UKRI| Evolution of NITrogen BUFFERing capacity of land water interfaces along hydrosystems of different age (NITBUFFER) ,UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET)Woodward, G; Bonada, N; Brown, LE; Death, RG; Durance, I; Gray, C; Hladyz, S; Ledger, ME; Milner, AM; Ormerod, SJ; Thompson, RM; Pawar, S;Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with highper capitametabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/30891Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2016License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 157 citations 157 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 68visibility views 68 download downloads 40 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/30891Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2016License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Wiley Funded by:UKRI | The influence of major FL..., UKRI | The influence of major FL..., UKRI | The influence of major FL...UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET) ,UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET). ,UKRI| The influence of major FLOOD disturbance on River EcoSystem Evolution Trajectories in recently deglaciated terrain (FLOODRESET)Lee E. Brown; Alexander M. Milner; Alexander M. Milner; Leonie R. Clitherow; Megan Klaar; Lawrence J. B. Eagle; Anne L. Robertson; Jessica L. Picken; Jessica L. Picken;AbstractFloods have a major influence in structuring river ecosystems. Considering projected increases in high‐magnitude rainfall events with climate change, major flooding events are expected to increase in many regions of the world. However, there is uncertainty about the effect of different flooding regimes and the importance of flood timing in structuring riverine habitats and their associated biotic communities. In addition, our understanding of community response is hindered by a lack of long‐term datasets to evaluate river ecosystem resilience to flooding. Here we show that in a river ecosystem studied for 30 years, a major winter flood reset the invertebrate community to a community similar to one that existed 15 years earlier. The community had not recovered to the preflood state when recurrent summer flooding 9 years later reset the ecosystem back to an even earlier community. Total macroinvertebrate density was reduced in the winter flood by an order of magnitude more than the summer flood. Meiofaunal invertebrates were more resilient to the flooding than macroinvertebrates, possibly due to their smaller body size facilitating greater access to in‐stream refugia. Pacific pink salmon escapement was markedly affected by the winter flood when eggs were developing in redds, compared to summer flooding, which occurred before the majority of eggs were laid. Our findings inform a proposed conceptual model of three possible responses to flooding by the invertebrate community in terms of switching to different states and effects on resilience to future flooding events. In a changing climate, understanding these responses is important for river managers to mitigate the biological impacts of extreme flooding effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:The Royal Society Funded by:UKRI | Predictable feedbacks bet..., UKRI | Synchrony in metapopulati...UKRI| Predictable feedbacks between warming, community structure and ecosystem functioning: a combined experimental and theoretical approach ,UKRI| Synchrony in metapopulations at multiple time scales: theory, experiments, and field dataDaniel C. Reuman; Daniel C. Reuman; Alexander M. Milner; Alexander M. Milner; Mark E. Ledger; Lee E. Brown; Lee E. Brown; Lawrence N. Hudson; Guy Woodward; Francois Edwards;Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size–scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts.
NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2012.0245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2012.0245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Wiley Funded by:UKRI | EMBER: Effects of Moorlan...UKRI| EMBER: Effects of Moorland Burning on the Ecohydrology of River basinsLee E. Brown; Katie L. Aspray; Mark E. Ledger; Chris Mainstone; Sheila M. Palmer; Martin Wilkes; Joseph Holden;AbstractLand use and climate change are driving widespread modifications to the biodiverse and functionally unique headwaters of rivers. In temperate and boreal regions, many headwaters drain peatlands where land management and climate change can cause significant soil erosion and peat deposition in rivers. However, effects of peat deposition in river ecosystems remain poorly understood. We provide two lines of evidence—derived from sediment deposition gradients in experimental mesocosms (0–7.5 g/m2) and headwaters (0.82–9.67 g/m2)—for the adverse impact of peat deposition on invertebrate community biodiversity. We found a consistent negative effect of sediment deposition across both the experiment and survey; at the community level, decreases in density (1956 to 56 individuals per m2 in headwaters; mean 823 ± 129 (SE) to 288 ± 115 individuals per m2 in mesocosms) and richness (mean 12 ± 1 to 6 ± 2 taxa in mesocosms) were observed. Sedimentation increased beta diversity amongst experimental replicates and headwaters, reflecting increasing stochasticity amongst tolerant groups in sedimented habitats. With increasing sedimentation, the density of the most common species, Leuctra inermis, declined from 290 ± 60 to 70 ± 30 individuals/m2 on average in mesocosms and >800 individuals/m2 to 0 in the field survey. Traits analysis of mesocosm assemblages suggested biodiversity loss was driven by decreasing abundance of invertebrates with trait combinations sensitive to sedimentation (longer life cycles, active aquatic dispersal of larvae, fixed aquatic eggs, shredding feeding habit). Functional diversity metrics reinforced the idea of more stochastic community assembly under higher sedimentation rates. While mesocosm assemblages showed some compositional differences to surveyed headwaters, ecological responses were consistent across these spatial scales. Our results suggest short‐term, small‐scale stressor experiments can inform understanding of “real‐world” peatland river ecosystems. As climate change and land‐use change are expected to enhance peatland erosion, significant alterations to invertebrate biodiversity can be expected where these eroded soils are deposited in rivers.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | NERC Science @ Leeds and ...UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES)Daniel Kenna; William N. W. Fincham; Alison M. Dunn; Lee E. Brown; Christopher Hassall;Global biodiversity is threatened by multiple anthropogenic stressors but little is known about the combined effects of environmental warming and invasive species on ecosystem functioning. We quantified thermal preferences and then compared leaf-litter processing rates at eight different temperatures (5.0-22.5 °C) by the invasive freshwater crustacean Dikerogammarus villosus and the Great Britain native Gammarus pulex at a range of body sizes. D. villosus preferred warmer temperatures but there was considerable overlap in the range of temperatures that the two species occupied during preference trials. When matched for size, G. pulex had a greater leaf shredding efficiency than D. villosus, suggesting that invasion and subsequent displacement of the native amphipod will result in reduced ecosystem functioning. However, D. villosus is an inherently larger species and interspecific variation in shredding was reduced when animals of a representative size range were compared. D. villosus shredding rates increased at a faster rate than G. pulex with increasing temperature suggesting that climate change may offset some of the reduction in function. D. villosus, but not G. pulex, showed evidence of an ability to select those temperatures at which its shredding rate was maximised, and the activation energy for shredding in D. villosus was more similar to predictions from metabolic theory. While per capita and mass-corrected shredding rates were lower in the invasive D. villosus than the native G. pulex, our study provides novel insights in to how the interactive effects of metabolic function, body size, behavioural thermoregulation, and density produce antagonistic effects between anthropogenic stressors.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/69282Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3796-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/69282Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3796-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:UKRI | NERC Science @ Leeds and ...UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES)Sarah C. Fell; Jonathan L. Carrivick; Martyn G. Kelly; Leopold Füreder; Lee E. Brown;doi: 10.1111/gcb.14454
pmid: 30230660
AbstractClimate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold‐water river systems that are responding rapidly to a shrinking cryosphere. Most recent research has demonstrated the severe vulnerability of river invertebrates to glacier retreat but effects upon other aquatic groups remain poorly quantified. Using new data sets from the European Alps, we show significant responses to declining glacier cover for diatoms, which play a critical functional role as freshwater primary producers. Specifically, diatom α‐diversity and density in rivers presently fed by glaciers will increase with future deglaciation, yet β‐diversity within and between sites will reduce because declining glacier influence will lower the spatiotemporal variability of glacier cover and its associated habitat heterogeneity. Changes in diatom assemblage composition as glacier cover declined were associated strongly with increasing riverbed stability and water temperature. At the species level, diatoms showed a gradation of responses; for example, Eunotia trinacria, found exclusively at river sites with high (≥52%) catchment glacier cover, may be affected negatively by ice loss. Conversely, seven taxa confined to sites with no glacier cover, including Gomphonema calcareum, stand to benefit. Nineteen (22%) taxa were noted as threatened, endangered, rare or decreasing on the Red List of Algae for Germany, with most at sites ≤26% glacier cover, meaning further ice loss may benefit these diatoms. However, six taxa found only in rivers ≥28% glacier cover may require reclassification of their Red List conservation status, as this habitat is threatened by deglaciation. Our identification of clear links between decreasing glacier cover and river diatom biodiversity suggests there could be significant reorganization of river ecosystems with deglaciation, for example, through alterations to primary production, biogeochemical cycles, and the shifting resource base of alpine freshwater food webs which lack significant allochthonous energy inputs.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | INTERACT, UKRI | NERC Science @ Leeds and ..., UKRI | Impacts of global warming...EC| INTERACT ,UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES) ,UKRI| Impacts of global warming in sentinel systems: from genes to ecosystemsAuthors: Fell, Sarah; Carrivick, Jonathan; Cauvy-Fraunié, Sophie; Crespo-Pérez, Verónica; +6 AuthorsFell, Sarah; Carrivick, Jonathan; Cauvy-Fraunié, Sophie; Crespo-Pérez, Verónica; Hood, Eran; Randall, Kate; Nicholass, Kirsty; Tiegs, Scott; Dumbrell, Alex; Brown, Lee;Le changement climatique modifie la structure et le fonctionnement des écosystèmes fluviaux dans le monde entier. Dans les rivières de montagne, il a été démontré que le recul des glaciers entraînait des changements systématiques dans la biodiversité des invertébrés aquatiques, mais les effets de la perte de glace sur d'autres taxons biologiques et sur les fonctions de l'ensemble de l'écosystème sont moins bien compris. En utilisant des données provenant de rivières de montagne couvrant six pays sur quatre continents, nous montrons que la diminution de la couverture glaciaire entraîne une augmentation constante du taux de décomposition de la cellulose, le polymère organique le plus abondant au monde. Les taux de décomposition de la cellulose ont été associés à une plus grande abondance de champignons aquatiques et du gène Cellobiohydrolase I (cbhI) dégradant la cellulose fongique, illustrant le potentiel de prédiction des fonctions au niveau de l'écosystème à partir des données au niveau du gène. Des associations claires entre les gènes fongiques, les populations et les communautés et le fonctionnement des écosystèmes dans les rivières de montagne indiquent que l'on peut s'attendre à ce que les diminutions mondiales continues de la couverture glaciaire modifient les fonctions vitales des écosystèmes, y compris les processus du cycle du carbone. L'impact du recul des glaciers sur la décomposition provoquée par les champignons dans les rivières est étudié à l'aide d'un test standardisé dans six pays. Moins de couverture glaciaire est liée à une décomposition accrue, qui est à son tour associée à une plus grande abondance de champignons et d'un gène de dégradation de la cellulose fongique, cbhI. El cambio climático está alterando la estructura y el funcionamiento de los ecosistemas fluviales en todo el mundo. En los ríos de montaña, se ha demostrado que el retroceso de los glaciares produce cambios sistemáticos en la biodiversidad de invertebrados acuáticos, pero los efectos de la pérdida de hielo en otros taxones biológicos y en las funciones de todo el ecosistema son menos conocidos. Utilizando datos de ríos de montaña que abarcan seis países en cuatro continentes, mostramos que la disminución de la cobertura de los glaciares conduce a aumentos constantes impulsados por hongos en la tasa de descomposición de la celulosa, el polímero orgánico más abundante del mundo. Las tasas de descomposición de la celulosa se asociaron con una mayor abundancia de hongos acuáticos y el gen de la celobiohidrolasa I (cbhI) que degrada la celulosa fúngica, lo que ilustra el potencial para predecir las funciones a nivel del ecosistema a partir de datos a nivel de genes. Las asociaciones claras entre los genes, las poblaciones y las comunidades de hongos y el funcionamiento de los ecosistemas en los ríos de montaña indican que se puede esperar que las disminuciones globales en curso en la cobertura de los glaciares cambien las funciones vitales de los ecosistemas, incluidos los procesos del ciclo del carbono. El impacto del retroceso de los glaciares en la descomposición causada por hongos en los ríos se investiga mediante una prueba estandarizada en seis países. Una menor cobertura de glaciares está relacionada con una mayor descomposición, que a su vez se asocia con una mayor abundancia de hongos y un gen fúngico que degrada la celulosa, cbhI. Climate change is altering the structure and functioning of river ecosystems worldwide. In mountain rivers, glacier retreat has been shown to result in systematic changes in aquatic invertebrate biodiversity, but the effects of ice loss on other biological taxa and on whole-ecosystem functions are less well understood. Using data from mountain rivers spanning six countries on four continents, we show that decreasing glacier cover leads to consistent fungal-driven increases in the decomposition rate of cellulose, the world's most abundant organic polymer. Cellulose decomposition rates were associated with greater abundance of aquatic fungi and the fungal cellulose-degrading Cellobiohydrolase I (cbhI) gene, illustrating the potential for predicting ecosystem-level functions from gene-level data. Clear associations between fungal genes, populations and communities and ecosystem functioning in mountain rivers indicate that ongoing global decreases in glacier cover can be expected to change vital ecosystem functions, including carbon cycle processes. The impact of glacier retreat on fungal-driven decomposition in rivers is investigated using a standardized test across six countries. Less glacier cover is linked to increased decomposition, which is in turn associated with a greater abundance of fungi and a fungal cellulose-degrading gene, cbhI. يؤدي تغير المناخ إلى تغيير هيكل وأداء النظم الإيكولوجية النهرية في جميع أنحاء العالم. في الأنهار الجبلية، ثبت أن تراجع الأنهار الجليدية يؤدي إلى تغيرات منهجية في التنوع البيولوجي للافقاريات المائية، ولكن آثار فقدان الجليد على الأصناف البيولوجية الأخرى وعلى وظائف النظام البيئي بأكمله غير مفهومة جيدًا. باستخدام البيانات من الأنهار الجبلية التي تمتد عبر ست دول في أربع قارات، نظهر أن تناقص الغطاء الجليدي يؤدي إلى زيادات ثابتة مدفوعة بالفطريات في معدل تحلل السليلوز، وهو البوليمر العضوي الأكثر وفرة في العالم. ارتبطت معدلات تحلل السليلوز بوفرة أكبر من الفطريات المائية وجين السليلوز المحلل للسليلوز I (cbhI)، مما يوضح إمكانية التنبؤ بوظائف مستوى النظام الإيكولوجي من البيانات على مستوى الجينات. تشير الارتباطات الواضحة بين الجينات الفطرية والسكان والمجتمعات ووظائف النظام الإيكولوجي في الأنهار الجبلية إلى أنه من المتوقع أن تؤدي الانخفاضات العالمية المستمرة في الغطاء الجليدي إلى تغيير وظائف النظام الإيكولوجي الحيوية، بما في ذلك عمليات دورة الكربون. يتم التحقيق في تأثير تراجع الأنهار الجليدية على التحلل الناجم عن الفطريات في الأنهار باستخدام اختبار موحد في ستة بلدان. يرتبط الغطاء الجليدي الأقل بزيادة التحلل، والذي يرتبط بدوره بوفرة أكبر من الفطريات وجين السليلوز الفطري المتحلل، cbhI.
CORE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03483668Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Essex Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01004-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03483668Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Essex Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01004-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu