Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sediment deposition from eroding peatlands alters headwater invertebrate biodiversity

Authors: Lee E. Brown; Katie L. Aspray; Mark E. Ledger; Chris Mainstone; Sheila M. Palmer; Martin Wilkes; Joseph Holden;

Sediment deposition from eroding peatlands alters headwater invertebrate biodiversity

Abstract

AbstractLand use and climate change are driving widespread modifications to the biodiverse and functionally unique headwaters of rivers. In temperate and boreal regions, many headwaters drain peatlands where land management and climate change can cause significant soil erosion and peat deposition in rivers. However, effects of peat deposition in river ecosystems remain poorly understood. We provide two lines of evidence—derived from sediment deposition gradients in experimental mesocosms (0–7.5 g/m2) and headwaters (0.82–9.67 g/m2)—for the adverse impact of peat deposition on invertebrate community biodiversity. We found a consistent negative effect of sediment deposition across both the experiment and survey; at the community level, decreases in density (1956 to 56 individuals per m2 in headwaters; mean 823 ± 129 (SE) to 288 ± 115 individuals per m2 in mesocosms) and richness (mean 12 ± 1 to 6 ± 2 taxa in mesocosms) were observed. Sedimentation increased beta diversity amongst experimental replicates and headwaters, reflecting increasing stochasticity amongst tolerant groups in sedimented habitats. With increasing sedimentation, the density of the most common species, Leuctra inermis, declined from 290 ± 60 to 70 ± 30 individuals/m2 on average in mesocosms and >800 individuals/m2 to 0 in the field survey. Traits analysis of mesocosm assemblages suggested biodiversity loss was driven by decreasing abundance of invertebrates with trait combinations sensitive to sedimentation (longer life cycles, active aquatic dispersal of larvae, fixed aquatic eggs, shredding feeding habit). Functional diversity metrics reinforced the idea of more stochastic community assembly under higher sedimentation rates. While mesocosm assemblages showed some compositional differences to surveyed headwaters, ecological responses were consistent across these spatial scales. Our results suggest short‐term, small‐scale stressor experiments can inform understanding of “real‐world” peatland river ecosystems. As climate change and land‐use change are expected to enhance peatland erosion, significant alterations to invertebrate biodiversity can be expected where these eroded soils are deposited in rivers.

Country
United Kingdom
Keywords

Geologic Sediments, Climate Change, Biodiversity, Primary Research Articles, Invertebrates, England, Rivers, Wetlands, Water Movements, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid