- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yahia Baashar; Gamal Alkawsi; Ammar Ahmed Alkahtani; Wahidah Hashim; Rina Azlin Razali; Sieh Kiong Tiong;doi: 10.3390/su13169008
Energy management and exchange have increasingly shifted from concentrated to hierarchical modes. Numerous issues have arisen in the decentralized energy sector, including the storage of customer data and the need to ensure data integrity, fairness, and accountability in the transaction phase. The problem is that in the field of the innovative technology of blockchain and its applications, with the energy sector still in the developmental stages, there is still a need for more research to understand the full capacity of the technology in the field. The main aim of this work was to investigate the state of the current research of blockchain technologies as well as their application within the field of energy. This work also set out to identify certain research gaps and provide a set of recommendations for future directions. Among these research gaps is the application of blockchain in decentralized storage, the integration of blockchain with artificial intelligence, and security and privacy concerns, which have not received much attention despite their importance. An analysis of fifty-seven carefully reviewed studies revealed that the emerging blockchain which provides privacy-protection technologies in cryptography and other areas that can be integrated to address users’ privacy concerns is another aspect that needs further investigation. Grid operations, economies, and customers will all learn from blockchain technology as it provides disintermediation, confidentiality, and tamper-proof transfers. Moreover, it provides innovative ways for customers and small solar generators to participate more actively in the electricity sector and to benefit from their properties. Blockchains are a rapidly evolving field of research and growth. A study of this emerging technology is necessary to increase comprehension, to educate the body of expertise on blockchains, and to realize its potential. This study recommends that future work investigates the potential application of blockchain in the energy sector as well as the challenges that face its implementation from the perspective of policy makers. This future approach will enable researchers to direct their focus to the case studies approach, which will facilitate and ease the application of blockchain technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yahia Baashar; Gamal Alkawsi; Ammar Ahmed Alkahtani; Wahidah Hashim; Rina Azlin Razali; Sieh Kiong Tiong;doi: 10.3390/su13169008
Energy management and exchange have increasingly shifted from concentrated to hierarchical modes. Numerous issues have arisen in the decentralized energy sector, including the storage of customer data and the need to ensure data integrity, fairness, and accountability in the transaction phase. The problem is that in the field of the innovative technology of blockchain and its applications, with the energy sector still in the developmental stages, there is still a need for more research to understand the full capacity of the technology in the field. The main aim of this work was to investigate the state of the current research of blockchain technologies as well as their application within the field of energy. This work also set out to identify certain research gaps and provide a set of recommendations for future directions. Among these research gaps is the application of blockchain in decentralized storage, the integration of blockchain with artificial intelligence, and security and privacy concerns, which have not received much attention despite their importance. An analysis of fifty-seven carefully reviewed studies revealed that the emerging blockchain which provides privacy-protection technologies in cryptography and other areas that can be integrated to address users’ privacy concerns is another aspect that needs further investigation. Grid operations, economies, and customers will all learn from blockchain technology as it provides disintermediation, confidentiality, and tamper-proof transfers. Moreover, it provides innovative ways for customers and small solar generators to participate more actively in the electricity sector and to benefit from their properties. Blockchains are a rapidly evolving field of research and growth. A study of this emerging technology is necessary to increase comprehension, to educate the body of expertise on blockchains, and to realize its potential. This study recommends that future work investigates the potential application of blockchain in the energy sector as well as the challenges that face its implementation from the perspective of policy makers. This future approach will enable researchers to direct their focus to the case studies approach, which will facilitate and ease the application of blockchain technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2020Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Fuad Noman; Gamal Alkawsi; Dallatu Abbas; Ammar Ahmed Alkahtani; Sieh Kiong Tiong; Janaka Ekanayake;Au cours des dernières années, l'énergie éolienne a attiré une attention considérable dans divers pays en raison de la forte demande énergétique et de la pénurie de sources d'énergie électrique traditionnelles. Parce que l'énergie éolienne constitue une source rentable et respectueuse de l'environnement, elle peut contribuer de manière significative à la réduction des émissions de carbone toujours croissantes. C'est l'une des technologies vertes à la croissance la plus rapide au monde, avec une part de production totale de 564 GW à la fin de 2018. En Malaisie, l'énergie éolienne a été un sujet brûlant dans les universités et l'industrie de l'énergie verte. Dans ce document, l'état actuel de la recherche sur l'énergie éolienne en Malaisie est examiné. Différents facteurs contributifs tels que la potentialité et les évaluations, la modélisation de la vitesse et de la direction du vent, la prévision du vent et la cartographie spatiale, et le dimensionnement optimal des parcs éoliens sont largement discutés. Ce document traite des progrès de toutes les études liées à l'énergie éolienne et présente des conclusions et des recommandations pour améliorer la recherche sur l'énergie éolienne en Malaisie. En los últimos años, la energía eólica ha ganado una gran atención en los últimos años en varios países debido a la alta demanda de energía y la escasez de fuentes de energía eléctrica tradicionales. Debido a que la energía eólica constituye una fuente rentable y respetuosa con el medio ambiente, puede contribuir significativamente a la reducción de las emisiones de carbono cada vez mayores. Es una de las tecnologías verdes de más rápido crecimiento en todo el mundo, con una participación total de generación de 564 GW a finales de 2018. En Malasia, la energía eólica ha sido un tema candente tanto en el mundo académico como en la industria de la energía verde. En este documento, se revisa el estado actual de la investigación en energía eólica en Malasia. Se discuten ampliamente diferentes factores contribuyentes, como la potencialidad y las evaluaciones, el modelado de la velocidad y la dirección del viento, la predicción del viento y el mapeo espacial, y el tamaño óptimo de los parques eólicos. Este documento discute el progreso de todos los estudios relacionados con la energía eólica y presenta conclusiones y recomendaciones para mejorar la investigación en energía eólica en Malasia. In recent years, wind energy has gained extensive attention in the recent years in various countries due to the high energy demand of energy and shortage of traditional electric energy sources.Because wind energy constitutes a cost effective and environmentally friendly source, it can significantly contribute toward the reduction of the ever-increasing carbon emissions.It is one of the fastest growing green technologies worldwide, with a total generation share of 564 GW as of the end of 2018.In Malaysia, wind energy has been a hot topic in both academia and green energy industry.In this paper, the current status of wind energy research in Malaysia is reviewed.Different contributing factors such as potentiality and assessments, wind speed and direction modeling, wind prediction and spatial mapping, and optimal sizing of wind farms are extensively discussed.This paper discusses the progress of all studies related to wind energy and presents conclusions and recommendations for improving wind energy research in Malaysia. في السنوات الأخيرة، اكتسبت طاقة الرياح اهتمامًا واسعًا في السنوات الأخيرة في مختلف البلدان بسبب ارتفاع الطلب على الطاقة ونقص مصادر الطاقة الكهربائية التقليدية. نظرًا لأن طاقة الرياح تشكل مصدرًا فعالًا من حيث التكلفة وصديقًا للبيئة، فإنها يمكن أن تساهم بشكل كبير في الحد من انبعاثات الكربون المتزايدة باستمرار. إنها واحدة من أسرع التقنيات الخضراء نموًا في جميع أنحاء العالم، حيث بلغ إجمالي حصة التوليد 564 جيجاوات اعتبارًا من نهاية عام 2018. في ماليزيا، كانت طاقة الرياح موضوعًا ساخنًا في كل من الأوساط الأكاديمية وصناعة الطاقة الخضراء. في هذه الورقة، تمت مراجعة الوضع الحالي لأبحاث طاقة الرياح في ماليزيا. تتم مناقشة عوامل مساهمة مختلفة مثل الإمكانات والتقييمات والتقييمات، ونمذجة سرعة الرياح واتجاهها، والتنبؤ بالرياح ورسم الخرائط المكانية، والتحجيم الأمثل لمزارع الرياح على نطاق واسع. تناقش هذه الورقة تقدم جميع الدراسات المتعلقة بطاقة الرياح وتقدم استنتاجات وتوصيات لتحسين أبحاث طاقة الرياح في ماليزيا.
IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2020Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Fuad Noman; Gamal Alkawsi; Dallatu Abbas; Ammar Ahmed Alkahtani; Sieh Kiong Tiong; Janaka Ekanayake;Au cours des dernières années, l'énergie éolienne a attiré une attention considérable dans divers pays en raison de la forte demande énergétique et de la pénurie de sources d'énergie électrique traditionnelles. Parce que l'énergie éolienne constitue une source rentable et respectueuse de l'environnement, elle peut contribuer de manière significative à la réduction des émissions de carbone toujours croissantes. C'est l'une des technologies vertes à la croissance la plus rapide au monde, avec une part de production totale de 564 GW à la fin de 2018. En Malaisie, l'énergie éolienne a été un sujet brûlant dans les universités et l'industrie de l'énergie verte. Dans ce document, l'état actuel de la recherche sur l'énergie éolienne en Malaisie est examiné. Différents facteurs contributifs tels que la potentialité et les évaluations, la modélisation de la vitesse et de la direction du vent, la prévision du vent et la cartographie spatiale, et le dimensionnement optimal des parcs éoliens sont largement discutés. Ce document traite des progrès de toutes les études liées à l'énergie éolienne et présente des conclusions et des recommandations pour améliorer la recherche sur l'énergie éolienne en Malaisie. En los últimos años, la energía eólica ha ganado una gran atención en los últimos años en varios países debido a la alta demanda de energía y la escasez de fuentes de energía eléctrica tradicionales. Debido a que la energía eólica constituye una fuente rentable y respetuosa con el medio ambiente, puede contribuir significativamente a la reducción de las emisiones de carbono cada vez mayores. Es una de las tecnologías verdes de más rápido crecimiento en todo el mundo, con una participación total de generación de 564 GW a finales de 2018. En Malasia, la energía eólica ha sido un tema candente tanto en el mundo académico como en la industria de la energía verde. En este documento, se revisa el estado actual de la investigación en energía eólica en Malasia. Se discuten ampliamente diferentes factores contribuyentes, como la potencialidad y las evaluaciones, el modelado de la velocidad y la dirección del viento, la predicción del viento y el mapeo espacial, y el tamaño óptimo de los parques eólicos. Este documento discute el progreso de todos los estudios relacionados con la energía eólica y presenta conclusiones y recomendaciones para mejorar la investigación en energía eólica en Malasia. In recent years, wind energy has gained extensive attention in the recent years in various countries due to the high energy demand of energy and shortage of traditional electric energy sources.Because wind energy constitutes a cost effective and environmentally friendly source, it can significantly contribute toward the reduction of the ever-increasing carbon emissions.It is one of the fastest growing green technologies worldwide, with a total generation share of 564 GW as of the end of 2018.In Malaysia, wind energy has been a hot topic in both academia and green energy industry.In this paper, the current status of wind energy research in Malaysia is reviewed.Different contributing factors such as potentiality and assessments, wind speed and direction modeling, wind prediction and spatial mapping, and optimal sizing of wind farms are extensively discussed.This paper discusses the progress of all studies related to wind energy and presents conclusions and recommendations for improving wind energy research in Malaysia. في السنوات الأخيرة، اكتسبت طاقة الرياح اهتمامًا واسعًا في السنوات الأخيرة في مختلف البلدان بسبب ارتفاع الطلب على الطاقة ونقص مصادر الطاقة الكهربائية التقليدية. نظرًا لأن طاقة الرياح تشكل مصدرًا فعالًا من حيث التكلفة وصديقًا للبيئة، فإنها يمكن أن تساهم بشكل كبير في الحد من انبعاثات الكربون المتزايدة باستمرار. إنها واحدة من أسرع التقنيات الخضراء نموًا في جميع أنحاء العالم، حيث بلغ إجمالي حصة التوليد 564 جيجاوات اعتبارًا من نهاية عام 2018. في ماليزيا، كانت طاقة الرياح موضوعًا ساخنًا في كل من الأوساط الأكاديمية وصناعة الطاقة الخضراء. في هذه الورقة، تمت مراجعة الوضع الحالي لأبحاث طاقة الرياح في ماليزيا. تتم مناقشة عوامل مساهمة مختلفة مثل الإمكانات والتقييمات والتقييمات، ونمذجة سرعة الرياح واتجاهها، والتنبؤ بالرياح ورسم الخرائط المكانية، والتحجيم الأمثل لمزارع الرياح على نطاق واسع. تناقش هذه الورقة تقدم جميع الدراسات المتعلقة بطاقة الرياح وتقدم استنتاجات وتوصيات لتحسين أبحاث طاقة الرياح في ماليزيا.
IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Fuad Noman; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali Q. Al-Shetwi; Sieh Kiong Tiong; Nasser Alalwan; Janaka Ekanayake; Ahmed Ibrahim Alzahrani;La prévision précise de la vitesse du vent est un facteur clé dans de nombreuses applications énergétiques, en particulier lorsque l'énergie éolienne est intégrée aux réseaux électriques. Cependant, en raison de la nature intermittente et non stationnaire de la vitesse du vent, il est difficile de la modéliser et de la prédire. En outre, l'utilisation de variables multivariées non corrélées en tant que variables d'entrée exogènes a souvent un impact négatif sur la performance des modèles de prédiction. Dans cet article, nous présentons une prédiction de la vitesse du vent à court terme en plusieurs étapes à l'aide de variables d'entrée exogènes multivariées. Nous mettons en œuvre différentes méthodes de sélection de variables pour sélectionner le meilleur ensemble de variables qui améliorent considérablement les performances des modèles de prédiction. Nous évaluons la performance de huit méthodes d'apprentissage par transfert, de quatre réseaux de neurones peu profonds (NN) et de la méthode de persistance sur la prédiction des valeurs futures de la vitesse du vent à l'aide d'horizons temporels à court terme, à court terme et à plusieurs étapes. Nous avons effectué l'évaluation sur des données de vitesse du vent échantillonnées sur deux ans, moyennées à des intervalles de 10 minutes. Les résultats montrent que le modèle non linéaire auto-régressif exogène (NARX) a surpassé toutes les autres méthodes, atteignant une erreur absolue moyenne (MAE) et une erreur quadratique moyenne (RMSE) de 0,2205 et 0,3405 pour les prédictions en plusieurs étapes, respectivement. Malgré la faible performance des méthodes d'apprentissage par transfert (c'est-à-dire 0,43 et 0,58 pour MAE et RMSE, respectivement), on pense que les résultats pourraient être encore améliorés avec une meilleure amélioration de la sélection des caractéristiques et des paramètres du modèle. La predicción precisa de la velocidad del viento es un factor clave en muchas aplicaciones energéticas, especialmente cuando la energía eólica se integra con las redes eléctricas. Sin embargo, debido a la naturaleza intermitente y no estacionaria de la velocidad del viento, modelar y predecir es un desafío. Además, el uso de variables multivariadas no correlacionadas como variables de entrada exógenas a menudo afecta negativamente el rendimiento de los modelos de predicción. En este artículo, presentamos una predicción de la velocidad del viento a corto plazo de varios pasos utilizando variables de entrada exógenas multivariadas. Implementamos diferentes métodos de selección de variables para seleccionar el mejor conjunto de variables que mejoren significativamente el rendimiento de los modelos de predicción. Evaluamos el rendimiento de ocho métodos de aprendizaje por transferencia, cuatro redes neuronales poco profundas (NN) y el método de persistencia para predecir los valores futuros de la velocidad del viento utilizando horizontes temporales de ultracorto plazo, de corto plazo y de varios pasos. Realizamos la evaluación sobre datos de velocidad del viento de alta muestra de dos años promediados a intervalos de 10 minutos. Los resultados muestran que el modelo exógeno autorregresivo no lineal (NARX) superó a todos los demás métodos, logrando un error absoluto medio medio (MAE) y un error cuadrático medio (RMSE) de 0.2205 y 0.3405 para predicciones de varios pasos, respectivamente. A pesar del menor rendimiento de los métodos de aprendizaje por transferencia (es decir, 0,43 y 0,58 para MAE y RMSE, respectivamente), se cree que los resultados podrían mejorarse aún más con una mejor mejora de la selección de características y los parámetros del modelo. Precise wind speed prediction is a key factor in many energy applications, especially when wind energy is integrated with power grids. However, because of the intermittent and nonstationary nature of wind speed, modeling and predicting it is a challenge. In addition, using uncorrelated multivariate variables as exogenous input variables often adversely impacts the performance of prediction models. In this paper, we present a multistep short-term wind speed prediction using multivariate exogenous input variables. We implement different variable selection methods to select the best set of variables that significantly improve the performance of prediction models. We evaluate the performance of eight transfer learning methods, four shallow neural networks (NNs), and the persistence method on predicting the future values of wind speed using ultrashort-term, short-term, and multistep time horizons. We performed the evaluation over two-year high-sampled wind speed data averaged at 10-minute intervals. Results show that Nonlinear Auto-Regressive Exogenous (NARX) model outperformed all other methods, achieving an average mean absolute error (MAE) and root mean square error (RMSE) of 0.2205 and 0.3405 for multistep predictions, respectively. Despite the lower performance of the transfer learning methods (i.e., 0.43 and 0.58 for MAE and RMSE, respectively), it is believed that results could be further improved with a better enhancement of the feature selection and model parameters. يعد التنبؤ الدقيق بسرعة الرياح عاملاً رئيسياً في العديد من تطبيقات الطاقة، خاصة عندما يتم دمج طاقة الرياح مع شبكات الطاقة. ومع ذلك، نظرًا للطبيعة المتقطعة وغير الثابتة لسرعة الرياح، فإن النمذجة والتنبؤ بها يمثلان تحديًا. بالإضافة إلى ذلك، فإن استخدام المتغيرات متعددة المتغيرات غير المترابطة كمتغيرات مدخلات خارجية غالبًا ما يؤثر سلبًا على أداء نماذج التنبؤ. في هذه الورقة، نقدم تنبؤًا متعدد الخطوات لسرعة الرياح على المدى القصير باستخدام متغيرات المدخلات الخارجية متعددة المتغيرات. ننفذ طرق اختيار متغيرات مختلفة لاختيار أفضل مجموعة من المتغيرات التي تحسن بشكل كبير أداء نماذج التنبؤ. نقوم بتقييم أداء ثماني طرق لتعلم النقل، وأربع شبكات عصبية ضحلة (NNs)، وطريقة المثابرة على التنبؤ بالقيم المستقبلية لسرعة الرياح باستخدام آفاق زمنية قصيرة الأجل وقصيرة الأجل ومتعددة الخطوات. أجرينا التقييم على مدى عامين من بيانات سرعة الرياح ذات العينات العالية بمتوسط 10 دقائق. تظهر النتائج أن نموذج التكرار التلقائي غير الخطي (NARX) تفوق على جميع الطرق الأخرى، حيث حقق متوسط متوسط الخطأ المطلق (MAE) وخطأ الجذر التربيعي (RMSE) 0.2205 و 0.3405 للتنبؤات متعددة الخطوات، على التوالي. على الرغم من الأداء المنخفض لأساليب تعلم النقل (أي 0.43 و 0.58 لـ MAE و RMSE، على التوالي)، يُعتقد أنه يمكن تحسين النتائج بشكل أكبر من خلال تحسين اختيار الميزات ومعلمات النموذج.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Fuad Noman; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali Q. Al-Shetwi; Sieh Kiong Tiong; Nasser Alalwan; Janaka Ekanayake; Ahmed Ibrahim Alzahrani;La prévision précise de la vitesse du vent est un facteur clé dans de nombreuses applications énergétiques, en particulier lorsque l'énergie éolienne est intégrée aux réseaux électriques. Cependant, en raison de la nature intermittente et non stationnaire de la vitesse du vent, il est difficile de la modéliser et de la prédire. En outre, l'utilisation de variables multivariées non corrélées en tant que variables d'entrée exogènes a souvent un impact négatif sur la performance des modèles de prédiction. Dans cet article, nous présentons une prédiction de la vitesse du vent à court terme en plusieurs étapes à l'aide de variables d'entrée exogènes multivariées. Nous mettons en œuvre différentes méthodes de sélection de variables pour sélectionner le meilleur ensemble de variables qui améliorent considérablement les performances des modèles de prédiction. Nous évaluons la performance de huit méthodes d'apprentissage par transfert, de quatre réseaux de neurones peu profonds (NN) et de la méthode de persistance sur la prédiction des valeurs futures de la vitesse du vent à l'aide d'horizons temporels à court terme, à court terme et à plusieurs étapes. Nous avons effectué l'évaluation sur des données de vitesse du vent échantillonnées sur deux ans, moyennées à des intervalles de 10 minutes. Les résultats montrent que le modèle non linéaire auto-régressif exogène (NARX) a surpassé toutes les autres méthodes, atteignant une erreur absolue moyenne (MAE) et une erreur quadratique moyenne (RMSE) de 0,2205 et 0,3405 pour les prédictions en plusieurs étapes, respectivement. Malgré la faible performance des méthodes d'apprentissage par transfert (c'est-à-dire 0,43 et 0,58 pour MAE et RMSE, respectivement), on pense que les résultats pourraient être encore améliorés avec une meilleure amélioration de la sélection des caractéristiques et des paramètres du modèle. La predicción precisa de la velocidad del viento es un factor clave en muchas aplicaciones energéticas, especialmente cuando la energía eólica se integra con las redes eléctricas. Sin embargo, debido a la naturaleza intermitente y no estacionaria de la velocidad del viento, modelar y predecir es un desafío. Además, el uso de variables multivariadas no correlacionadas como variables de entrada exógenas a menudo afecta negativamente el rendimiento de los modelos de predicción. En este artículo, presentamos una predicción de la velocidad del viento a corto plazo de varios pasos utilizando variables de entrada exógenas multivariadas. Implementamos diferentes métodos de selección de variables para seleccionar el mejor conjunto de variables que mejoren significativamente el rendimiento de los modelos de predicción. Evaluamos el rendimiento de ocho métodos de aprendizaje por transferencia, cuatro redes neuronales poco profundas (NN) y el método de persistencia para predecir los valores futuros de la velocidad del viento utilizando horizontes temporales de ultracorto plazo, de corto plazo y de varios pasos. Realizamos la evaluación sobre datos de velocidad del viento de alta muestra de dos años promediados a intervalos de 10 minutos. Los resultados muestran que el modelo exógeno autorregresivo no lineal (NARX) superó a todos los demás métodos, logrando un error absoluto medio medio (MAE) y un error cuadrático medio (RMSE) de 0.2205 y 0.3405 para predicciones de varios pasos, respectivamente. A pesar del menor rendimiento de los métodos de aprendizaje por transferencia (es decir, 0,43 y 0,58 para MAE y RMSE, respectivamente), se cree que los resultados podrían mejorarse aún más con una mejor mejora de la selección de características y los parámetros del modelo. Precise wind speed prediction is a key factor in many energy applications, especially when wind energy is integrated with power grids. However, because of the intermittent and nonstationary nature of wind speed, modeling and predicting it is a challenge. In addition, using uncorrelated multivariate variables as exogenous input variables often adversely impacts the performance of prediction models. In this paper, we present a multistep short-term wind speed prediction using multivariate exogenous input variables. We implement different variable selection methods to select the best set of variables that significantly improve the performance of prediction models. We evaluate the performance of eight transfer learning methods, four shallow neural networks (NNs), and the persistence method on predicting the future values of wind speed using ultrashort-term, short-term, and multistep time horizons. We performed the evaluation over two-year high-sampled wind speed data averaged at 10-minute intervals. Results show that Nonlinear Auto-Regressive Exogenous (NARX) model outperformed all other methods, achieving an average mean absolute error (MAE) and root mean square error (RMSE) of 0.2205 and 0.3405 for multistep predictions, respectively. Despite the lower performance of the transfer learning methods (i.e., 0.43 and 0.58 for MAE and RMSE, respectively), it is believed that results could be further improved with a better enhancement of the feature selection and model parameters. يعد التنبؤ الدقيق بسرعة الرياح عاملاً رئيسياً في العديد من تطبيقات الطاقة، خاصة عندما يتم دمج طاقة الرياح مع شبكات الطاقة. ومع ذلك، نظرًا للطبيعة المتقطعة وغير الثابتة لسرعة الرياح، فإن النمذجة والتنبؤ بها يمثلان تحديًا. بالإضافة إلى ذلك، فإن استخدام المتغيرات متعددة المتغيرات غير المترابطة كمتغيرات مدخلات خارجية غالبًا ما يؤثر سلبًا على أداء نماذج التنبؤ. في هذه الورقة، نقدم تنبؤًا متعدد الخطوات لسرعة الرياح على المدى القصير باستخدام متغيرات المدخلات الخارجية متعددة المتغيرات. ننفذ طرق اختيار متغيرات مختلفة لاختيار أفضل مجموعة من المتغيرات التي تحسن بشكل كبير أداء نماذج التنبؤ. نقوم بتقييم أداء ثماني طرق لتعلم النقل، وأربع شبكات عصبية ضحلة (NNs)، وطريقة المثابرة على التنبؤ بالقيم المستقبلية لسرعة الرياح باستخدام آفاق زمنية قصيرة الأجل وقصيرة الأجل ومتعددة الخطوات. أجرينا التقييم على مدى عامين من بيانات سرعة الرياح ذات العينات العالية بمتوسط 10 دقائق. تظهر النتائج أن نموذج التكرار التلقائي غير الخطي (NARX) تفوق على جميع الطرق الأخرى، حيث حقق متوسط متوسط الخطأ المطلق (MAE) وخطأ الجذر التربيعي (RMSE) 0.2205 و 0.3405 للتنبؤات متعددة الخطوات، على التوالي. على الرغم من الأداء المنخفض لأساليب تعلم النقل (أي 0.43 و 0.58 لـ MAE و RMSE، على التوالي)، يُعتقد أنه يمكن تحسين النتائج بشكل أكبر من خلال تحسين اختيار الميزات ومعلمات النموذج.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Gamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; +2 AuthorsGamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; Husni Mohd Radzi; Luiz Fernando Capretz;In response to the escalating global CO2 emissions and the urgent need to reduce dependence on fossil fuels, this study diverges from prior research that predominantly focuses on intentions or attitudes towards renewable energy. It investigates the actual uptake of residential solar photovoltaic (PV) systems in regions rich in solar radiation, where, despite the potential, renewables remain a minor part of the energy mix. Incorporating psychological and functional factors and employing the innovation resistance theory (IRT), the study comprehensively examines solar PV technology’s resistance aspects. Utilizing a robust methodological framework that uses partial least squares-structural equation modeling (PLS-SEM) with fuzzy set qualitative comparative analysis (fsQCA), the research evaluates responses from a comprehensive questionnaire survey of 758 households. The advantages of this method lie in its ability to capture both symmetric and asymmetric relationships, thereby offering a richer and more detailed analysis compared to traditional single-method approaches. PLS-SEM results identify significant barriers: image barriers (β = −0.131, t = 3.418, p < 0.001), traditional barriers (β = −0.084, t = 2.143, p < 0.05), and risk barriers (β = −0.124, t = 4.172, p < 0.001). Positive influences include environmental benefits (β = 0.166, t = 3.108, p < 0.001), environmental concern (β = 0.364, t = 6.341, p < 0.001), and government incentives (β = 0.159, t = 2.767, p < 0.01). Conversely, usage barriers and value barriers appeared non-influential. Conversely, fsQCA revealed that all factors may have a role in the uptake of residential solar PV systems. The novelty of this research is evident in its application of IRT to the context of solar PV adoption and the use of a hybrid analytical method, which together provide new insights into consumer behavior and policy implications. These findings offer actionable recommendations for policymakers and practitioners to promote the adoption of residential solar PV systems.
Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Gamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; +2 AuthorsGamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; Husni Mohd Radzi; Luiz Fernando Capretz;In response to the escalating global CO2 emissions and the urgent need to reduce dependence on fossil fuels, this study diverges from prior research that predominantly focuses on intentions or attitudes towards renewable energy. It investigates the actual uptake of residential solar photovoltaic (PV) systems in regions rich in solar radiation, where, despite the potential, renewables remain a minor part of the energy mix. Incorporating psychological and functional factors and employing the innovation resistance theory (IRT), the study comprehensively examines solar PV technology’s resistance aspects. Utilizing a robust methodological framework that uses partial least squares-structural equation modeling (PLS-SEM) with fuzzy set qualitative comparative analysis (fsQCA), the research evaluates responses from a comprehensive questionnaire survey of 758 households. The advantages of this method lie in its ability to capture both symmetric and asymmetric relationships, thereby offering a richer and more detailed analysis compared to traditional single-method approaches. PLS-SEM results identify significant barriers: image barriers (β = −0.131, t = 3.418, p < 0.001), traditional barriers (β = −0.084, t = 2.143, p < 0.05), and risk barriers (β = −0.124, t = 4.172, p < 0.001). Positive influences include environmental benefits (β = 0.166, t = 3.108, p < 0.001), environmental concern (β = 0.364, t = 6.341, p < 0.001), and government incentives (β = 0.159, t = 2.767, p < 0.01). Conversely, usage barriers and value barriers appeared non-influential. Conversely, fsQCA revealed that all factors may have a role in the uptake of residential solar PV systems. The novelty of this research is evident in its application of IRT to the context of solar PV adoption and the use of a hybrid analytical method, which together provide new insights into consumer behavior and policy implications. These findings offer actionable recommendations for policymakers and practitioners to promote the adoption of residential solar PV systems.
Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gamal Alkawsi; Nor’ashikin Ali; Yahia Baashar;doi: 10.3390/app11083297
The rapid development of smart technologies and data analytics empowers most industries to evolve their systems and introduce innovative applications. Consequently, smart metering technology, an internet of things-based application service, is diffusing rapidly in the energy sector. Regardless of its associated benefits, smart meters continue to struggle from consumers’ acceptance. To promote smart meters’ successful deployment, research is needed to better understand consumers’ acceptance of smart metering. Motivated by these concerns, a smart meter acceptance model is developed to evaluate the moderation role of experience and personal innovativeness factors among residential consumers. A cross-sectional research design was used in this study. Data were collected using a self-administrated questionnaire from 318 smart meters consumers who have had experience in using it. Hypothetical relationships were assessed and validated using partial least squares structural equation modelling. The empirical findings exert the moderating role of experience and personal innovativeness of smart meter acceptance that achieved an acceptable fit with the data, and specifically, five out of nine hypotheses were supported.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gamal Alkawsi; Nor’ashikin Ali; Yahia Baashar;doi: 10.3390/app11083297
The rapid development of smart technologies and data analytics empowers most industries to evolve their systems and introduce innovative applications. Consequently, smart metering technology, an internet of things-based application service, is diffusing rapidly in the energy sector. Regardless of its associated benefits, smart meters continue to struggle from consumers’ acceptance. To promote smart meters’ successful deployment, research is needed to better understand consumers’ acceptance of smart metering. Motivated by these concerns, a smart meter acceptance model is developed to evaluate the moderation role of experience and personal innovativeness factors among residential consumers. A cross-sectional research design was used in this study. Data were collected using a self-administrated questionnaire from 318 smart meters consumers who have had experience in using it. Hypothetical relationships were assessed and validated using partial least squares structural equation modelling. The empirical findings exert the moderating role of experience and personal innovativeness of smart meter acceptance that achieved an acceptable fit with the data, and specifically, five out of nine hypotheses were supported.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Misbah Abdelrahim; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali M. W. Alhasan; Mohammad Khudari; Mohd Rizuan Abdul Kadir; Janaka Ekanayake; Sieh Kiong Tiong;doi: 10.3390/en15155412
Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Misbah Abdelrahim; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali M. W. Alhasan; Mohammad Khudari; Mohd Rizuan Abdul Kadir; Janaka Ekanayake; Sieh Kiong Tiong;doi: 10.3390/en15155412
Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Redhwan Al-amri; Raja Kumar Murugesan; Mubarak Almutairi; Kashif Munir; Gamal Alkawsi; Yahia Baashar;doi: 10.3390/app12136523
As applications generate massive amounts of data streams, the requirement for ways to analyze and cluster this data has become a critical field of research for knowledge discovery. Data stream clustering’s primary objective and goal are to acquire insights into incoming data. Recognizing all possible patterns in data streams that enter at variable rates and structures and evolve over time is critical for acquiring insights. Analyzing the data stream has been one of the vital research areas due to the inevitable evolving aspect of the data stream and its vast application domains. Existing algorithms for handling data stream clustering consider adding various data summarization structures starting from grid projection and ending with buffers of Core-Micro and Macro clusters. However, it is found that the static assumption of the data summarization impacts the quality of clustering. To fill this gap, an online clustering algorithm for handling evolving data streams using a tempo-spatial hyper cube called BOCEDS TSHC has been developed in this research. The role of the tempo-spatial hyper cube (TSHC) is to add more dimensions to the data summarization for more degree of freedom. TSHC when added to Buffer-based Online Clustering for Evolving Data Stream (BOCEDS) results in a superior evolving data stream clustering algorithm. Evaluation based on both the real world and synthetic datasets has proven the superiority of the developed BOCEDS TSHC clustering algorithm over the baseline algorithms with respect to most of the clustering metrics.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Redhwan Al-amri; Raja Kumar Murugesan; Mubarak Almutairi; Kashif Munir; Gamal Alkawsi; Yahia Baashar;doi: 10.3390/app12136523
As applications generate massive amounts of data streams, the requirement for ways to analyze and cluster this data has become a critical field of research for knowledge discovery. Data stream clustering’s primary objective and goal are to acquire insights into incoming data. Recognizing all possible patterns in data streams that enter at variable rates and structures and evolve over time is critical for acquiring insights. Analyzing the data stream has been one of the vital research areas due to the inevitable evolving aspect of the data stream and its vast application domains. Existing algorithms for handling data stream clustering consider adding various data summarization structures starting from grid projection and ending with buffers of Core-Micro and Macro clusters. However, it is found that the static assumption of the data summarization impacts the quality of clustering. To fill this gap, an online clustering algorithm for handling evolving data streams using a tempo-spatial hyper cube called BOCEDS TSHC has been developed in this research. The role of the tempo-spatial hyper cube (TSHC) is to add more dimensions to the data summarization for more degree of freedom. TSHC when added to Buffer-based Online Clustering for Evolving Data Stream (BOCEDS) results in a superior evolving data stream clustering algorithm. Evaluation based on both the real world and synthetic datasets has proven the superiority of the developed BOCEDS TSHC clustering algorithm over the baseline algorithms with respect to most of the clustering metrics.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; +4 AuthorsDallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; Yahia Baashar; Ammar Ahmed Alkahtani; Luiz Fernando Capretz; Sieh Kiong Tiong;doi: 10.3390/pr11051420
As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the kinetic energy of wind into electrical energy using wind turbines (WT) and electrical generators. However, the output power of a wind turbine is affected by various factors, such as wind speed, wind direction, and generator design. In order to optimize the performance of a WEHS, it is important to track the maximum power point (MPP) of the system. Various methods of tracking the MPP of the WEHS have been proposed by several research articles, which include traditional techniques such as direct power control (DPC) and indirect power control (IPC). These traditional methods in the standalone form are characterized by some drawbacks which render the method ineffective. The hybrid techniques comprising two different maximum power point tracking (MPPT) algorithms were further proposed to eliminate the shortages. Furtherly, Artificial Intelligence (AI)-based MPPT algorithms were proposed for the WEHS as either standalone or integrated with the traditional MPPT methods. Therefore, this research focused on the review of the AI-based MPPT and their performances as applied to WEHS. Traditional MPPT methods that are studied in the previous articles were discussed briefly. In addition, AI-based MPPT and different hybrid methods were also discussed in detail. Our study highlights the effectiveness of AI-based MPPT techniques in WEHS using an artificial neural network (ANN), fuzzy logic controller (FLC), and particle swarm optimization (PSO). These techniques were applied either as standalone methods or in various hybrid combinations, resulting in a significant increase in the system’s power extraction performance. Our findings suggest that utilizing AI-based MPPT techniques can improve the efficiency and overall performance of WEHS, providing a promising solution for enhancing renewable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; +4 AuthorsDallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; Yahia Baashar; Ammar Ahmed Alkahtani; Luiz Fernando Capretz; Sieh Kiong Tiong;doi: 10.3390/pr11051420
As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the kinetic energy of wind into electrical energy using wind turbines (WT) and electrical generators. However, the output power of a wind turbine is affected by various factors, such as wind speed, wind direction, and generator design. In order to optimize the performance of a WEHS, it is important to track the maximum power point (MPP) of the system. Various methods of tracking the MPP of the WEHS have been proposed by several research articles, which include traditional techniques such as direct power control (DPC) and indirect power control (IPC). These traditional methods in the standalone form are characterized by some drawbacks which render the method ineffective. The hybrid techniques comprising two different maximum power point tracking (MPPT) algorithms were further proposed to eliminate the shortages. Furtherly, Artificial Intelligence (AI)-based MPPT algorithms were proposed for the WEHS as either standalone or integrated with the traditional MPPT methods. Therefore, this research focused on the review of the AI-based MPPT and their performances as applied to WEHS. Traditional MPPT methods that are studied in the previous articles were discussed briefly. In addition, AI-based MPPT and different hybrid methods were also discussed in detail. Our study highlights the effectiveness of AI-based MPPT techniques in WEHS using an artificial neural network (ANN), fuzzy logic controller (FLC), and particle swarm optimization (PSO). These techniques were applied either as standalone methods or in various hybrid combinations, resulting in a significant increase in the system’s power extraction performance. Our findings suggest that utilizing AI-based MPPT techniques can improve the efficiency and overall performance of WEHS, providing a promising solution for enhancing renewable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Gamal Alkawsi; Yahia Baashar; Dallatu Abbas U; Ammar Ahmed Alkahtani; Sieh Kiong Tiong;doi: 10.3390/app11093847
With the rise in the demand for electric vehicles, the need for a reliable charging infrastructure increases to accommodate the rapid public adoption of this type of transportation. Simultaneously, local electricity grids are being under pressure and require support from naturally abundant and inexpensive alternative energy sources such as wind and solar. This is why the world has recently witnessed the emergence of renewable energy-based charging stations that have received great acclaim. In this paper, we review studies related to this type of alternative energy charging infrastructure. We provide comprehensive research covering essential aspects in this field, including resources, potentiality, planning, control, and pricing. The study also includes studying and clarifying challenges facing this type of electric charging station and proposing suitable solutions for those challenges. The paper aims to provide the reader with an overview of charging electric vehicles through renewable energy and establishing the ground for further research in this vital field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Gamal Alkawsi; Yahia Baashar; Dallatu Abbas U; Ammar Ahmed Alkahtani; Sieh Kiong Tiong;doi: 10.3390/app11093847
With the rise in the demand for electric vehicles, the need for a reliable charging infrastructure increases to accommodate the rapid public adoption of this type of transportation. Simultaneously, local electricity grids are being under pressure and require support from naturally abundant and inexpensive alternative energy sources such as wind and solar. This is why the world has recently witnessed the emergence of renewable energy-based charging stations that have received great acclaim. In this paper, we review studies related to this type of alternative energy charging infrastructure. We provide comprehensive research covering essential aspects in this field, including resources, potentiality, planning, control, and pricing. The study also includes studying and clarifying challenges facing this type of electric charging station and proposing suitable solutions for those challenges. The paper aims to provide the reader with an overview of charging electric vehicles through renewable energy and establishing the ground for further research in this vital field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; +5 AuthorsNur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; Chen Chai Phing; Yahia Baashar; Luiz Fernando Capretz; Ali Q. Al-Shetwi; Sieh Kiong Tiong;doi: 10.3390/pr11051382
Solar is a significant renewable energy source. Solar energy can provide for the world’s energy needs while minimizing global warming from traditional sources. Forecasting the output of renewable energy has a considerable impact on decisions about the operation and management of power systems. It is crucial to accurately forecast the output of renewable energy sources in order to assure grid dependability and sustainability and to reduce the risk and expense of energy markets and systems. Recent advancements in long short-term memory (LSTM) have attracted researchers to the model, and its promising potential is reflected in the method’s richness and the growing number of papers about it. To facilitate further research and development in this area, this paper investigates LSTM models for forecasting solar energy by using time-series data. The paper is divided into two parts: (1) independent LSTM models and (2) hybrid models that incorporate LSTM as another type of technique. The Root mean square error (RMSE) and other error metrics are used as the representative evaluation metrics for comparing the accuracy of the selected methods. According to empirical studies, the two types of models (independent LSTM and hybrid) have distinct advantages and disadvantages depending on the scenario. For instance, LSTM outperforms the other standalone models, but hybrid models generally outperform standalone models despite their longer data training time requirement. The most notable discovery is the better suitability of LSTM as a predictive model to forecast the amount of solar radiation and photovoltaic power compared with other conventional machine learning methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; +5 AuthorsNur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; Chen Chai Phing; Yahia Baashar; Luiz Fernando Capretz; Ali Q. Al-Shetwi; Sieh Kiong Tiong;doi: 10.3390/pr11051382
Solar is a significant renewable energy source. Solar energy can provide for the world’s energy needs while minimizing global warming from traditional sources. Forecasting the output of renewable energy has a considerable impact on decisions about the operation and management of power systems. It is crucial to accurately forecast the output of renewable energy sources in order to assure grid dependability and sustainability and to reduce the risk and expense of energy markets and systems. Recent advancements in long short-term memory (LSTM) have attracted researchers to the model, and its promising potential is reflected in the method’s richness and the growing number of papers about it. To facilitate further research and development in this area, this paper investigates LSTM models for forecasting solar energy by using time-series data. The paper is divided into two parts: (1) independent LSTM models and (2) hybrid models that incorporate LSTM as another type of technique. The Root mean square error (RMSE) and other error metrics are used as the representative evaluation metrics for comparing the accuracy of the selected methods. According to empirical studies, the two types of models (independent LSTM and hybrid) have distinct advantages and disadvantages depending on the scenario. For instance, LSTM outperforms the other standalone models, but hybrid models generally outperform standalone models despite their longer data training time requirement. The most notable discovery is the better suitability of LSTM as a predictive model to forecast the amount of solar radiation and photovoltaic power compared with other conventional machine learning methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yahia Baashar; Gamal Alkawsi; Ammar Ahmed Alkahtani; Wahidah Hashim; Rina Azlin Razali; Sieh Kiong Tiong;doi: 10.3390/su13169008
Energy management and exchange have increasingly shifted from concentrated to hierarchical modes. Numerous issues have arisen in the decentralized energy sector, including the storage of customer data and the need to ensure data integrity, fairness, and accountability in the transaction phase. The problem is that in the field of the innovative technology of blockchain and its applications, with the energy sector still in the developmental stages, there is still a need for more research to understand the full capacity of the technology in the field. The main aim of this work was to investigate the state of the current research of blockchain technologies as well as their application within the field of energy. This work also set out to identify certain research gaps and provide a set of recommendations for future directions. Among these research gaps is the application of blockchain in decentralized storage, the integration of blockchain with artificial intelligence, and security and privacy concerns, which have not received much attention despite their importance. An analysis of fifty-seven carefully reviewed studies revealed that the emerging blockchain which provides privacy-protection technologies in cryptography and other areas that can be integrated to address users’ privacy concerns is another aspect that needs further investigation. Grid operations, economies, and customers will all learn from blockchain technology as it provides disintermediation, confidentiality, and tamper-proof transfers. Moreover, it provides innovative ways for customers and small solar generators to participate more actively in the electricity sector and to benefit from their properties. Blockchains are a rapidly evolving field of research and growth. A study of this emerging technology is necessary to increase comprehension, to educate the body of expertise on blockchains, and to realize its potential. This study recommends that future work investigates the potential application of blockchain in the energy sector as well as the challenges that face its implementation from the perspective of policy makers. This future approach will enable researchers to direct their focus to the case studies approach, which will facilitate and ease the application of blockchain technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yahia Baashar; Gamal Alkawsi; Ammar Ahmed Alkahtani; Wahidah Hashim; Rina Azlin Razali; Sieh Kiong Tiong;doi: 10.3390/su13169008
Energy management and exchange have increasingly shifted from concentrated to hierarchical modes. Numerous issues have arisen in the decentralized energy sector, including the storage of customer data and the need to ensure data integrity, fairness, and accountability in the transaction phase. The problem is that in the field of the innovative technology of blockchain and its applications, with the energy sector still in the developmental stages, there is still a need for more research to understand the full capacity of the technology in the field. The main aim of this work was to investigate the state of the current research of blockchain technologies as well as their application within the field of energy. This work also set out to identify certain research gaps and provide a set of recommendations for future directions. Among these research gaps is the application of blockchain in decentralized storage, the integration of blockchain with artificial intelligence, and security and privacy concerns, which have not received much attention despite their importance. An analysis of fifty-seven carefully reviewed studies revealed that the emerging blockchain which provides privacy-protection technologies in cryptography and other areas that can be integrated to address users’ privacy concerns is another aspect that needs further investigation. Grid operations, economies, and customers will all learn from blockchain technology as it provides disintermediation, confidentiality, and tamper-proof transfers. Moreover, it provides innovative ways for customers and small solar generators to participate more actively in the electricity sector and to benefit from their properties. Blockchains are a rapidly evolving field of research and growth. A study of this emerging technology is necessary to increase comprehension, to educate the body of expertise on blockchains, and to realize its potential. This study recommends that future work investigates the potential application of blockchain in the energy sector as well as the challenges that face its implementation from the perspective of policy makers. This future approach will enable researchers to direct their focus to the case studies approach, which will facilitate and ease the application of blockchain technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2020Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Fuad Noman; Gamal Alkawsi; Dallatu Abbas; Ammar Ahmed Alkahtani; Sieh Kiong Tiong; Janaka Ekanayake;Au cours des dernières années, l'énergie éolienne a attiré une attention considérable dans divers pays en raison de la forte demande énergétique et de la pénurie de sources d'énergie électrique traditionnelles. Parce que l'énergie éolienne constitue une source rentable et respectueuse de l'environnement, elle peut contribuer de manière significative à la réduction des émissions de carbone toujours croissantes. C'est l'une des technologies vertes à la croissance la plus rapide au monde, avec une part de production totale de 564 GW à la fin de 2018. En Malaisie, l'énergie éolienne a été un sujet brûlant dans les universités et l'industrie de l'énergie verte. Dans ce document, l'état actuel de la recherche sur l'énergie éolienne en Malaisie est examiné. Différents facteurs contributifs tels que la potentialité et les évaluations, la modélisation de la vitesse et de la direction du vent, la prévision du vent et la cartographie spatiale, et le dimensionnement optimal des parcs éoliens sont largement discutés. Ce document traite des progrès de toutes les études liées à l'énergie éolienne et présente des conclusions et des recommandations pour améliorer la recherche sur l'énergie éolienne en Malaisie. En los últimos años, la energía eólica ha ganado una gran atención en los últimos años en varios países debido a la alta demanda de energía y la escasez de fuentes de energía eléctrica tradicionales. Debido a que la energía eólica constituye una fuente rentable y respetuosa con el medio ambiente, puede contribuir significativamente a la reducción de las emisiones de carbono cada vez mayores. Es una de las tecnologías verdes de más rápido crecimiento en todo el mundo, con una participación total de generación de 564 GW a finales de 2018. En Malasia, la energía eólica ha sido un tema candente tanto en el mundo académico como en la industria de la energía verde. En este documento, se revisa el estado actual de la investigación en energía eólica en Malasia. Se discuten ampliamente diferentes factores contribuyentes, como la potencialidad y las evaluaciones, el modelado de la velocidad y la dirección del viento, la predicción del viento y el mapeo espacial, y el tamaño óptimo de los parques eólicos. Este documento discute el progreso de todos los estudios relacionados con la energía eólica y presenta conclusiones y recomendaciones para mejorar la investigación en energía eólica en Malasia. In recent years, wind energy has gained extensive attention in the recent years in various countries due to the high energy demand of energy and shortage of traditional electric energy sources.Because wind energy constitutes a cost effective and environmentally friendly source, it can significantly contribute toward the reduction of the ever-increasing carbon emissions.It is one of the fastest growing green technologies worldwide, with a total generation share of 564 GW as of the end of 2018.In Malaysia, wind energy has been a hot topic in both academia and green energy industry.In this paper, the current status of wind energy research in Malaysia is reviewed.Different contributing factors such as potentiality and assessments, wind speed and direction modeling, wind prediction and spatial mapping, and optimal sizing of wind farms are extensively discussed.This paper discusses the progress of all studies related to wind energy and presents conclusions and recommendations for improving wind energy research in Malaysia. في السنوات الأخيرة، اكتسبت طاقة الرياح اهتمامًا واسعًا في السنوات الأخيرة في مختلف البلدان بسبب ارتفاع الطلب على الطاقة ونقص مصادر الطاقة الكهربائية التقليدية. نظرًا لأن طاقة الرياح تشكل مصدرًا فعالًا من حيث التكلفة وصديقًا للبيئة، فإنها يمكن أن تساهم بشكل كبير في الحد من انبعاثات الكربون المتزايدة باستمرار. إنها واحدة من أسرع التقنيات الخضراء نموًا في جميع أنحاء العالم، حيث بلغ إجمالي حصة التوليد 564 جيجاوات اعتبارًا من نهاية عام 2018. في ماليزيا، كانت طاقة الرياح موضوعًا ساخنًا في كل من الأوساط الأكاديمية وصناعة الطاقة الخضراء. في هذه الورقة، تمت مراجعة الوضع الحالي لأبحاث طاقة الرياح في ماليزيا. تتم مناقشة عوامل مساهمة مختلفة مثل الإمكانات والتقييمات والتقييمات، ونمذجة سرعة الرياح واتجاهها، والتنبؤ بالرياح ورسم الخرائط المكانية، والتحجيم الأمثل لمزارع الرياح على نطاق واسع. تناقش هذه الورقة تقدم جميع الدراسات المتعلقة بطاقة الرياح وتقدم استنتاجات وتوصيات لتحسين أبحاث طاقة الرياح في ماليزيا.
IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2020Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Fuad Noman; Gamal Alkawsi; Dallatu Abbas; Ammar Ahmed Alkahtani; Sieh Kiong Tiong; Janaka Ekanayake;Au cours des dernières années, l'énergie éolienne a attiré une attention considérable dans divers pays en raison de la forte demande énergétique et de la pénurie de sources d'énergie électrique traditionnelles. Parce que l'énergie éolienne constitue une source rentable et respectueuse de l'environnement, elle peut contribuer de manière significative à la réduction des émissions de carbone toujours croissantes. C'est l'une des technologies vertes à la croissance la plus rapide au monde, avec une part de production totale de 564 GW à la fin de 2018. En Malaisie, l'énergie éolienne a été un sujet brûlant dans les universités et l'industrie de l'énergie verte. Dans ce document, l'état actuel de la recherche sur l'énergie éolienne en Malaisie est examiné. Différents facteurs contributifs tels que la potentialité et les évaluations, la modélisation de la vitesse et de la direction du vent, la prévision du vent et la cartographie spatiale, et le dimensionnement optimal des parcs éoliens sont largement discutés. Ce document traite des progrès de toutes les études liées à l'énergie éolienne et présente des conclusions et des recommandations pour améliorer la recherche sur l'énergie éolienne en Malaisie. En los últimos años, la energía eólica ha ganado una gran atención en los últimos años en varios países debido a la alta demanda de energía y la escasez de fuentes de energía eléctrica tradicionales. Debido a que la energía eólica constituye una fuente rentable y respetuosa con el medio ambiente, puede contribuir significativamente a la reducción de las emisiones de carbono cada vez mayores. Es una de las tecnologías verdes de más rápido crecimiento en todo el mundo, con una participación total de generación de 564 GW a finales de 2018. En Malasia, la energía eólica ha sido un tema candente tanto en el mundo académico como en la industria de la energía verde. En este documento, se revisa el estado actual de la investigación en energía eólica en Malasia. Se discuten ampliamente diferentes factores contribuyentes, como la potencialidad y las evaluaciones, el modelado de la velocidad y la dirección del viento, la predicción del viento y el mapeo espacial, y el tamaño óptimo de los parques eólicos. Este documento discute el progreso de todos los estudios relacionados con la energía eólica y presenta conclusiones y recomendaciones para mejorar la investigación en energía eólica en Malasia. In recent years, wind energy has gained extensive attention in the recent years in various countries due to the high energy demand of energy and shortage of traditional electric energy sources.Because wind energy constitutes a cost effective and environmentally friendly source, it can significantly contribute toward the reduction of the ever-increasing carbon emissions.It is one of the fastest growing green technologies worldwide, with a total generation share of 564 GW as of the end of 2018.In Malaysia, wind energy has been a hot topic in both academia and green energy industry.In this paper, the current status of wind energy research in Malaysia is reviewed.Different contributing factors such as potentiality and assessments, wind speed and direction modeling, wind prediction and spatial mapping, and optimal sizing of wind farms are extensively discussed.This paper discusses the progress of all studies related to wind energy and presents conclusions and recommendations for improving wind energy research in Malaysia. في السنوات الأخيرة، اكتسبت طاقة الرياح اهتمامًا واسعًا في السنوات الأخيرة في مختلف البلدان بسبب ارتفاع الطلب على الطاقة ونقص مصادر الطاقة الكهربائية التقليدية. نظرًا لأن طاقة الرياح تشكل مصدرًا فعالًا من حيث التكلفة وصديقًا للبيئة، فإنها يمكن أن تساهم بشكل كبير في الحد من انبعاثات الكربون المتزايدة باستمرار. إنها واحدة من أسرع التقنيات الخضراء نموًا في جميع أنحاء العالم، حيث بلغ إجمالي حصة التوليد 564 جيجاوات اعتبارًا من نهاية عام 2018. في ماليزيا، كانت طاقة الرياح موضوعًا ساخنًا في كل من الأوساط الأكاديمية وصناعة الطاقة الخضراء. في هذه الورقة، تمت مراجعة الوضع الحالي لأبحاث طاقة الرياح في ماليزيا. تتم مناقشة عوامل مساهمة مختلفة مثل الإمكانات والتقييمات والتقييمات، ونمذجة سرعة الرياح واتجاهها، والتنبؤ بالرياح ورسم الخرائط المكانية، والتحجيم الأمثل لمزارع الرياح على نطاق واسع. تناقش هذه الورقة تقدم جميع الدراسات المتعلقة بطاقة الرياح وتقدم استنتاجات وتوصيات لتحسين أبحاث طاقة الرياح في ماليزيا.
IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3006134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Fuad Noman; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali Q. Al-Shetwi; Sieh Kiong Tiong; Nasser Alalwan; Janaka Ekanayake; Ahmed Ibrahim Alzahrani;La prévision précise de la vitesse du vent est un facteur clé dans de nombreuses applications énergétiques, en particulier lorsque l'énergie éolienne est intégrée aux réseaux électriques. Cependant, en raison de la nature intermittente et non stationnaire de la vitesse du vent, il est difficile de la modéliser et de la prédire. En outre, l'utilisation de variables multivariées non corrélées en tant que variables d'entrée exogènes a souvent un impact négatif sur la performance des modèles de prédiction. Dans cet article, nous présentons une prédiction de la vitesse du vent à court terme en plusieurs étapes à l'aide de variables d'entrée exogènes multivariées. Nous mettons en œuvre différentes méthodes de sélection de variables pour sélectionner le meilleur ensemble de variables qui améliorent considérablement les performances des modèles de prédiction. Nous évaluons la performance de huit méthodes d'apprentissage par transfert, de quatre réseaux de neurones peu profonds (NN) et de la méthode de persistance sur la prédiction des valeurs futures de la vitesse du vent à l'aide d'horizons temporels à court terme, à court terme et à plusieurs étapes. Nous avons effectué l'évaluation sur des données de vitesse du vent échantillonnées sur deux ans, moyennées à des intervalles de 10 minutes. Les résultats montrent que le modèle non linéaire auto-régressif exogène (NARX) a surpassé toutes les autres méthodes, atteignant une erreur absolue moyenne (MAE) et une erreur quadratique moyenne (RMSE) de 0,2205 et 0,3405 pour les prédictions en plusieurs étapes, respectivement. Malgré la faible performance des méthodes d'apprentissage par transfert (c'est-à-dire 0,43 et 0,58 pour MAE et RMSE, respectivement), on pense que les résultats pourraient être encore améliorés avec une meilleure amélioration de la sélection des caractéristiques et des paramètres du modèle. La predicción precisa de la velocidad del viento es un factor clave en muchas aplicaciones energéticas, especialmente cuando la energía eólica se integra con las redes eléctricas. Sin embargo, debido a la naturaleza intermitente y no estacionaria de la velocidad del viento, modelar y predecir es un desafío. Además, el uso de variables multivariadas no correlacionadas como variables de entrada exógenas a menudo afecta negativamente el rendimiento de los modelos de predicción. En este artículo, presentamos una predicción de la velocidad del viento a corto plazo de varios pasos utilizando variables de entrada exógenas multivariadas. Implementamos diferentes métodos de selección de variables para seleccionar el mejor conjunto de variables que mejoren significativamente el rendimiento de los modelos de predicción. Evaluamos el rendimiento de ocho métodos de aprendizaje por transferencia, cuatro redes neuronales poco profundas (NN) y el método de persistencia para predecir los valores futuros de la velocidad del viento utilizando horizontes temporales de ultracorto plazo, de corto plazo y de varios pasos. Realizamos la evaluación sobre datos de velocidad del viento de alta muestra de dos años promediados a intervalos de 10 minutos. Los resultados muestran que el modelo exógeno autorregresivo no lineal (NARX) superó a todos los demás métodos, logrando un error absoluto medio medio (MAE) y un error cuadrático medio (RMSE) de 0.2205 y 0.3405 para predicciones de varios pasos, respectivamente. A pesar del menor rendimiento de los métodos de aprendizaje por transferencia (es decir, 0,43 y 0,58 para MAE y RMSE, respectivamente), se cree que los resultados podrían mejorarse aún más con una mejor mejora de la selección de características y los parámetros del modelo. Precise wind speed prediction is a key factor in many energy applications, especially when wind energy is integrated with power grids. However, because of the intermittent and nonstationary nature of wind speed, modeling and predicting it is a challenge. In addition, using uncorrelated multivariate variables as exogenous input variables often adversely impacts the performance of prediction models. In this paper, we present a multistep short-term wind speed prediction using multivariate exogenous input variables. We implement different variable selection methods to select the best set of variables that significantly improve the performance of prediction models. We evaluate the performance of eight transfer learning methods, four shallow neural networks (NNs), and the persistence method on predicting the future values of wind speed using ultrashort-term, short-term, and multistep time horizons. We performed the evaluation over two-year high-sampled wind speed data averaged at 10-minute intervals. Results show that Nonlinear Auto-Regressive Exogenous (NARX) model outperformed all other methods, achieving an average mean absolute error (MAE) and root mean square error (RMSE) of 0.2205 and 0.3405 for multistep predictions, respectively. Despite the lower performance of the transfer learning methods (i.e., 0.43 and 0.58 for MAE and RMSE, respectively), it is believed that results could be further improved with a better enhancement of the feature selection and model parameters. يعد التنبؤ الدقيق بسرعة الرياح عاملاً رئيسياً في العديد من تطبيقات الطاقة، خاصة عندما يتم دمج طاقة الرياح مع شبكات الطاقة. ومع ذلك، نظرًا للطبيعة المتقطعة وغير الثابتة لسرعة الرياح، فإن النمذجة والتنبؤ بها يمثلان تحديًا. بالإضافة إلى ذلك، فإن استخدام المتغيرات متعددة المتغيرات غير المترابطة كمتغيرات مدخلات خارجية غالبًا ما يؤثر سلبًا على أداء نماذج التنبؤ. في هذه الورقة، نقدم تنبؤًا متعدد الخطوات لسرعة الرياح على المدى القصير باستخدام متغيرات المدخلات الخارجية متعددة المتغيرات. ننفذ طرق اختيار متغيرات مختلفة لاختيار أفضل مجموعة من المتغيرات التي تحسن بشكل كبير أداء نماذج التنبؤ. نقوم بتقييم أداء ثماني طرق لتعلم النقل، وأربع شبكات عصبية ضحلة (NNs)، وطريقة المثابرة على التنبؤ بالقيم المستقبلية لسرعة الرياح باستخدام آفاق زمنية قصيرة الأجل وقصيرة الأجل ومتعددة الخطوات. أجرينا التقييم على مدى عامين من بيانات سرعة الرياح ذات العينات العالية بمتوسط 10 دقائق. تظهر النتائج أن نموذج التكرار التلقائي غير الخطي (NARX) تفوق على جميع الطرق الأخرى، حيث حقق متوسط متوسط الخطأ المطلق (MAE) وخطأ الجذر التربيعي (RMSE) 0.2205 و 0.3405 للتنبؤات متعددة الخطوات، على التوالي. على الرغم من الأداء المنخفض لأساليب تعلم النقل (أي 0.43 و 0.58 لـ MAE و RMSE، على التوالي)، يُعتقد أنه يمكن تحسين النتائج بشكل أكبر من خلال تحسين اختيار الميزات ومعلمات النموذج.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Fuad Noman; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali Q. Al-Shetwi; Sieh Kiong Tiong; Nasser Alalwan; Janaka Ekanayake; Ahmed Ibrahim Alzahrani;La prévision précise de la vitesse du vent est un facteur clé dans de nombreuses applications énergétiques, en particulier lorsque l'énergie éolienne est intégrée aux réseaux électriques. Cependant, en raison de la nature intermittente et non stationnaire de la vitesse du vent, il est difficile de la modéliser et de la prédire. En outre, l'utilisation de variables multivariées non corrélées en tant que variables d'entrée exogènes a souvent un impact négatif sur la performance des modèles de prédiction. Dans cet article, nous présentons une prédiction de la vitesse du vent à court terme en plusieurs étapes à l'aide de variables d'entrée exogènes multivariées. Nous mettons en œuvre différentes méthodes de sélection de variables pour sélectionner le meilleur ensemble de variables qui améliorent considérablement les performances des modèles de prédiction. Nous évaluons la performance de huit méthodes d'apprentissage par transfert, de quatre réseaux de neurones peu profonds (NN) et de la méthode de persistance sur la prédiction des valeurs futures de la vitesse du vent à l'aide d'horizons temporels à court terme, à court terme et à plusieurs étapes. Nous avons effectué l'évaluation sur des données de vitesse du vent échantillonnées sur deux ans, moyennées à des intervalles de 10 minutes. Les résultats montrent que le modèle non linéaire auto-régressif exogène (NARX) a surpassé toutes les autres méthodes, atteignant une erreur absolue moyenne (MAE) et une erreur quadratique moyenne (RMSE) de 0,2205 et 0,3405 pour les prédictions en plusieurs étapes, respectivement. Malgré la faible performance des méthodes d'apprentissage par transfert (c'est-à-dire 0,43 et 0,58 pour MAE et RMSE, respectivement), on pense que les résultats pourraient être encore améliorés avec une meilleure amélioration de la sélection des caractéristiques et des paramètres du modèle. La predicción precisa de la velocidad del viento es un factor clave en muchas aplicaciones energéticas, especialmente cuando la energía eólica se integra con las redes eléctricas. Sin embargo, debido a la naturaleza intermitente y no estacionaria de la velocidad del viento, modelar y predecir es un desafío. Además, el uso de variables multivariadas no correlacionadas como variables de entrada exógenas a menudo afecta negativamente el rendimiento de los modelos de predicción. En este artículo, presentamos una predicción de la velocidad del viento a corto plazo de varios pasos utilizando variables de entrada exógenas multivariadas. Implementamos diferentes métodos de selección de variables para seleccionar el mejor conjunto de variables que mejoren significativamente el rendimiento de los modelos de predicción. Evaluamos el rendimiento de ocho métodos de aprendizaje por transferencia, cuatro redes neuronales poco profundas (NN) y el método de persistencia para predecir los valores futuros de la velocidad del viento utilizando horizontes temporales de ultracorto plazo, de corto plazo y de varios pasos. Realizamos la evaluación sobre datos de velocidad del viento de alta muestra de dos años promediados a intervalos de 10 minutos. Los resultados muestran que el modelo exógeno autorregresivo no lineal (NARX) superó a todos los demás métodos, logrando un error absoluto medio medio (MAE) y un error cuadrático medio (RMSE) de 0.2205 y 0.3405 para predicciones de varios pasos, respectivamente. A pesar del menor rendimiento de los métodos de aprendizaje por transferencia (es decir, 0,43 y 0,58 para MAE y RMSE, respectivamente), se cree que los resultados podrían mejorarse aún más con una mejor mejora de la selección de características y los parámetros del modelo. Precise wind speed prediction is a key factor in many energy applications, especially when wind energy is integrated with power grids. However, because of the intermittent and nonstationary nature of wind speed, modeling and predicting it is a challenge. In addition, using uncorrelated multivariate variables as exogenous input variables often adversely impacts the performance of prediction models. In this paper, we present a multistep short-term wind speed prediction using multivariate exogenous input variables. We implement different variable selection methods to select the best set of variables that significantly improve the performance of prediction models. We evaluate the performance of eight transfer learning methods, four shallow neural networks (NNs), and the persistence method on predicting the future values of wind speed using ultrashort-term, short-term, and multistep time horizons. We performed the evaluation over two-year high-sampled wind speed data averaged at 10-minute intervals. Results show that Nonlinear Auto-Regressive Exogenous (NARX) model outperformed all other methods, achieving an average mean absolute error (MAE) and root mean square error (RMSE) of 0.2205 and 0.3405 for multistep predictions, respectively. Despite the lower performance of the transfer learning methods (i.e., 0.43 and 0.58 for MAE and RMSE, respectively), it is believed that results could be further improved with a better enhancement of the feature selection and model parameters. يعد التنبؤ الدقيق بسرعة الرياح عاملاً رئيسياً في العديد من تطبيقات الطاقة، خاصة عندما يتم دمج طاقة الرياح مع شبكات الطاقة. ومع ذلك، نظرًا للطبيعة المتقطعة وغير الثابتة لسرعة الرياح، فإن النمذجة والتنبؤ بها يمثلان تحديًا. بالإضافة إلى ذلك، فإن استخدام المتغيرات متعددة المتغيرات غير المترابطة كمتغيرات مدخلات خارجية غالبًا ما يؤثر سلبًا على أداء نماذج التنبؤ. في هذه الورقة، نقدم تنبؤًا متعدد الخطوات لسرعة الرياح على المدى القصير باستخدام متغيرات المدخلات الخارجية متعددة المتغيرات. ننفذ طرق اختيار متغيرات مختلفة لاختيار أفضل مجموعة من المتغيرات التي تحسن بشكل كبير أداء نماذج التنبؤ. نقوم بتقييم أداء ثماني طرق لتعلم النقل، وأربع شبكات عصبية ضحلة (NNs)، وطريقة المثابرة على التنبؤ بالقيم المستقبلية لسرعة الرياح باستخدام آفاق زمنية قصيرة الأجل وقصيرة الأجل ومتعددة الخطوات. أجرينا التقييم على مدى عامين من بيانات سرعة الرياح ذات العينات العالية بمتوسط 10 دقائق. تظهر النتائج أن نموذج التكرار التلقائي غير الخطي (NARX) تفوق على جميع الطرق الأخرى، حيث حقق متوسط متوسط الخطأ المطلق (MAE) وخطأ الجذر التربيعي (RMSE) 0.2205 و 0.3405 للتنبؤات متعددة الخطوات، على التوالي. على الرغم من الأداء المنخفض لأساليب تعلم النقل (أي 0.43 و 0.58 لـ MAE و RMSE، على التوالي)، يُعتقد أنه يمكن تحسين النتائج بشكل أكبر من خلال تحسين اختيار الميزات ومعلمات النموذج.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Gamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; +2 AuthorsGamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; Husni Mohd Radzi; Luiz Fernando Capretz;In response to the escalating global CO2 emissions and the urgent need to reduce dependence on fossil fuels, this study diverges from prior research that predominantly focuses on intentions or attitudes towards renewable energy. It investigates the actual uptake of residential solar photovoltaic (PV) systems in regions rich in solar radiation, where, despite the potential, renewables remain a minor part of the energy mix. Incorporating psychological and functional factors and employing the innovation resistance theory (IRT), the study comprehensively examines solar PV technology’s resistance aspects. Utilizing a robust methodological framework that uses partial least squares-structural equation modeling (PLS-SEM) with fuzzy set qualitative comparative analysis (fsQCA), the research evaluates responses from a comprehensive questionnaire survey of 758 households. The advantages of this method lie in its ability to capture both symmetric and asymmetric relationships, thereby offering a richer and more detailed analysis compared to traditional single-method approaches. PLS-SEM results identify significant barriers: image barriers (β = −0.131, t = 3.418, p < 0.001), traditional barriers (β = −0.084, t = 2.143, p < 0.05), and risk barriers (β = −0.124, t = 4.172, p < 0.001). Positive influences include environmental benefits (β = 0.166, t = 3.108, p < 0.001), environmental concern (β = 0.364, t = 6.341, p < 0.001), and government incentives (β = 0.159, t = 2.767, p < 0.01). Conversely, usage barriers and value barriers appeared non-influential. Conversely, fsQCA revealed that all factors may have a role in the uptake of residential solar PV systems. The novelty of this research is evident in its application of IRT to the context of solar PV adoption and the use of a hybrid analytical method, which together provide new insights into consumer behavior and policy implications. These findings offer actionable recommendations for policymakers and practitioners to promote the adoption of residential solar PV systems.
Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Gamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; +2 AuthorsGamal Alkawsi; Nazrita Ibrahim; Mohammed A. Al-Sharafi; Abdulsalam Salihu Mustafa; Husni Mohd Radzi; Luiz Fernando Capretz;In response to the escalating global CO2 emissions and the urgent need to reduce dependence on fossil fuels, this study diverges from prior research that predominantly focuses on intentions or attitudes towards renewable energy. It investigates the actual uptake of residential solar photovoltaic (PV) systems in regions rich in solar radiation, where, despite the potential, renewables remain a minor part of the energy mix. Incorporating psychological and functional factors and employing the innovation resistance theory (IRT), the study comprehensively examines solar PV technology’s resistance aspects. Utilizing a robust methodological framework that uses partial least squares-structural equation modeling (PLS-SEM) with fuzzy set qualitative comparative analysis (fsQCA), the research evaluates responses from a comprehensive questionnaire survey of 758 households. The advantages of this method lie in its ability to capture both symmetric and asymmetric relationships, thereby offering a richer and more detailed analysis compared to traditional single-method approaches. PLS-SEM results identify significant barriers: image barriers (β = −0.131, t = 3.418, p < 0.001), traditional barriers (β = −0.084, t = 2.143, p < 0.05), and risk barriers (β = −0.124, t = 4.172, p < 0.001). Positive influences include environmental benefits (β = 0.166, t = 3.108, p < 0.001), environmental concern (β = 0.364, t = 6.341, p < 0.001), and government incentives (β = 0.159, t = 2.767, p < 0.01). Conversely, usage barriers and value barriers appeared non-influential. Conversely, fsQCA revealed that all factors may have a role in the uptake of residential solar PV systems. The novelty of this research is evident in its application of IRT to the context of solar PV adoption and the use of a hybrid analytical method, which together provide new insights into consumer behavior and policy implications. These findings offer actionable recommendations for policymakers and practitioners to promote the adoption of residential solar PV systems.
Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Engineering Science ... arrow_drop_down Engineering Science and Technology, an International JournalArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jestch.2024.101795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gamal Alkawsi; Nor’ashikin Ali; Yahia Baashar;doi: 10.3390/app11083297
The rapid development of smart technologies and data analytics empowers most industries to evolve their systems and introduce innovative applications. Consequently, smart metering technology, an internet of things-based application service, is diffusing rapidly in the energy sector. Regardless of its associated benefits, smart meters continue to struggle from consumers’ acceptance. To promote smart meters’ successful deployment, research is needed to better understand consumers’ acceptance of smart metering. Motivated by these concerns, a smart meter acceptance model is developed to evaluate the moderation role of experience and personal innovativeness factors among residential consumers. A cross-sectional research design was used in this study. Data were collected using a self-administrated questionnaire from 318 smart meters consumers who have had experience in using it. Hypothetical relationships were assessed and validated using partial least squares structural equation modelling. The empirical findings exert the moderating role of experience and personal innovativeness of smart meter acceptance that achieved an acceptable fit with the data, and specifically, five out of nine hypotheses were supported.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gamal Alkawsi; Nor’ashikin Ali; Yahia Baashar;doi: 10.3390/app11083297
The rapid development of smart technologies and data analytics empowers most industries to evolve their systems and introduce innovative applications. Consequently, smart metering technology, an internet of things-based application service, is diffusing rapidly in the energy sector. Regardless of its associated benefits, smart meters continue to struggle from consumers’ acceptance. To promote smart meters’ successful deployment, research is needed to better understand consumers’ acceptance of smart metering. Motivated by these concerns, a smart meter acceptance model is developed to evaluate the moderation role of experience and personal innovativeness factors among residential consumers. A cross-sectional research design was used in this study. Data were collected using a self-administrated questionnaire from 318 smart meters consumers who have had experience in using it. Hypothetical relationships were assessed and validated using partial least squares structural equation modelling. The empirical findings exert the moderating role of experience and personal innovativeness of smart meter acceptance that achieved an acceptable fit with the data, and specifically, five out of nine hypotheses were supported.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/8/3297/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11083297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Misbah Abdelrahim; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali M. W. Alhasan; Mohammad Khudari; Mohd Rizuan Abdul Kadir; Janaka Ekanayake; Sieh Kiong Tiong;doi: 10.3390/en15155412
Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Misbah Abdelrahim; Gamal Alkawsi; Ammar Ahmed Alkahtani; Ali M. W. Alhasan; Mohammad Khudari; Mohd Rizuan Abdul Kadir; Janaka Ekanayake; Sieh Kiong Tiong;doi: 10.3390/en15155412
Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/15/5412/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Redhwan Al-amri; Raja Kumar Murugesan; Mubarak Almutairi; Kashif Munir; Gamal Alkawsi; Yahia Baashar;doi: 10.3390/app12136523
As applications generate massive amounts of data streams, the requirement for ways to analyze and cluster this data has become a critical field of research for knowledge discovery. Data stream clustering’s primary objective and goal are to acquire insights into incoming data. Recognizing all possible patterns in data streams that enter at variable rates and structures and evolve over time is critical for acquiring insights. Analyzing the data stream has been one of the vital research areas due to the inevitable evolving aspect of the data stream and its vast application domains. Existing algorithms for handling data stream clustering consider adding various data summarization structures starting from grid projection and ending with buffers of Core-Micro and Macro clusters. However, it is found that the static assumption of the data summarization impacts the quality of clustering. To fill this gap, an online clustering algorithm for handling evolving data streams using a tempo-spatial hyper cube called BOCEDS TSHC has been developed in this research. The role of the tempo-spatial hyper cube (TSHC) is to add more dimensions to the data summarization for more degree of freedom. TSHC when added to Buffer-based Online Clustering for Evolving Data Stream (BOCEDS) results in a superior evolving data stream clustering algorithm. Evaluation based on both the real world and synthetic datasets has proven the superiority of the developed BOCEDS TSHC clustering algorithm over the baseline algorithms with respect to most of the clustering metrics.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Redhwan Al-amri; Raja Kumar Murugesan; Mubarak Almutairi; Kashif Munir; Gamal Alkawsi; Yahia Baashar;doi: 10.3390/app12136523
As applications generate massive amounts of data streams, the requirement for ways to analyze and cluster this data has become a critical field of research for knowledge discovery. Data stream clustering’s primary objective and goal are to acquire insights into incoming data. Recognizing all possible patterns in data streams that enter at variable rates and structures and evolve over time is critical for acquiring insights. Analyzing the data stream has been one of the vital research areas due to the inevitable evolving aspect of the data stream and its vast application domains. Existing algorithms for handling data stream clustering consider adding various data summarization structures starting from grid projection and ending with buffers of Core-Micro and Macro clusters. However, it is found that the static assumption of the data summarization impacts the quality of clustering. To fill this gap, an online clustering algorithm for handling evolving data streams using a tempo-spatial hyper cube called BOCEDS TSHC has been developed in this research. The role of the tempo-spatial hyper cube (TSHC) is to add more dimensions to the data summarization for more degree of freedom. TSHC when added to Buffer-based Online Clustering for Evolving Data Stream (BOCEDS) results in a superior evolving data stream clustering algorithm. Evaluation based on both the real world and synthetic datasets has proven the superiority of the developed BOCEDS TSHC clustering algorithm over the baseline algorithms with respect to most of the clustering metrics.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/13/6523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12136523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; +4 AuthorsDallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; Yahia Baashar; Ammar Ahmed Alkahtani; Luiz Fernando Capretz; Sieh Kiong Tiong;doi: 10.3390/pr11051420
As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the kinetic energy of wind into electrical energy using wind turbines (WT) and electrical generators. However, the output power of a wind turbine is affected by various factors, such as wind speed, wind direction, and generator design. In order to optimize the performance of a WEHS, it is important to track the maximum power point (MPP) of the system. Various methods of tracking the MPP of the WEHS have been proposed by several research articles, which include traditional techniques such as direct power control (DPC) and indirect power control (IPC). These traditional methods in the standalone form are characterized by some drawbacks which render the method ineffective. The hybrid techniques comprising two different maximum power point tracking (MPPT) algorithms were further proposed to eliminate the shortages. Furtherly, Artificial Intelligence (AI)-based MPPT algorithms were proposed for the WEHS as either standalone or integrated with the traditional MPPT methods. Therefore, this research focused on the review of the AI-based MPPT and their performances as applied to WEHS. Traditional MPPT methods that are studied in the previous articles were discussed briefly. In addition, AI-based MPPT and different hybrid methods were also discussed in detail. Our study highlights the effectiveness of AI-based MPPT techniques in WEHS using an artificial neural network (ANN), fuzzy logic controller (FLC), and particle swarm optimization (PSO). These techniques were applied either as standalone methods or in various hybrid combinations, resulting in a significant increase in the system’s power extraction performance. Our findings suggest that utilizing AI-based MPPT techniques can improve the efficiency and overall performance of WEHS, providing a promising solution for enhancing renewable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; +4 AuthorsDallatu Abbas Umar; Gamal Alkawsi; Nur Liyana Mohd Jailani; Mohammad Ahmed Alomari; Yahia Baashar; Ammar Ahmed Alkahtani; Luiz Fernando Capretz; Sieh Kiong Tiong;doi: 10.3390/pr11051420
As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the kinetic energy of wind into electrical energy using wind turbines (WT) and electrical generators. However, the output power of a wind turbine is affected by various factors, such as wind speed, wind direction, and generator design. In order to optimize the performance of a WEHS, it is important to track the maximum power point (MPP) of the system. Various methods of tracking the MPP of the WEHS have been proposed by several research articles, which include traditional techniques such as direct power control (DPC) and indirect power control (IPC). These traditional methods in the standalone form are characterized by some drawbacks which render the method ineffective. The hybrid techniques comprising two different maximum power point tracking (MPPT) algorithms were further proposed to eliminate the shortages. Furtherly, Artificial Intelligence (AI)-based MPPT algorithms were proposed for the WEHS as either standalone or integrated with the traditional MPPT methods. Therefore, this research focused on the review of the AI-based MPPT and their performances as applied to WEHS. Traditional MPPT methods that are studied in the previous articles were discussed briefly. In addition, AI-based MPPT and different hybrid methods were also discussed in detail. Our study highlights the effectiveness of AI-based MPPT techniques in WEHS using an artificial neural network (ANN), fuzzy logic controller (FLC), and particle swarm optimization (PSO). These techniques were applied either as standalone methods or in various hybrid combinations, resulting in a significant increase in the system’s power extraction performance. Our findings suggest that utilizing AI-based MPPT techniques can improve the efficiency and overall performance of WEHS, providing a promising solution for enhancing renewable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Gamal Alkawsi; Yahia Baashar; Dallatu Abbas U; Ammar Ahmed Alkahtani; Sieh Kiong Tiong;doi: 10.3390/app11093847
With the rise in the demand for electric vehicles, the need for a reliable charging infrastructure increases to accommodate the rapid public adoption of this type of transportation. Simultaneously, local electricity grids are being under pressure and require support from naturally abundant and inexpensive alternative energy sources such as wind and solar. This is why the world has recently witnessed the emergence of renewable energy-based charging stations that have received great acclaim. In this paper, we review studies related to this type of alternative energy charging infrastructure. We provide comprehensive research covering essential aspects in this field, including resources, potentiality, planning, control, and pricing. The study also includes studying and clarifying challenges facing this type of electric charging station and proposing suitable solutions for those challenges. The paper aims to provide the reader with an overview of charging electric vehicles through renewable energy and establishing the ground for further research in this vital field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Gamal Alkawsi; Yahia Baashar; Dallatu Abbas U; Ammar Ahmed Alkahtani; Sieh Kiong Tiong;doi: 10.3390/app11093847
With the rise in the demand for electric vehicles, the need for a reliable charging infrastructure increases to accommodate the rapid public adoption of this type of transportation. Simultaneously, local electricity grids are being under pressure and require support from naturally abundant and inexpensive alternative energy sources such as wind and solar. This is why the world has recently witnessed the emergence of renewable energy-based charging stations that have received great acclaim. In this paper, we review studies related to this type of alternative energy charging infrastructure. We provide comprehensive research covering essential aspects in this field, including resources, potentiality, planning, control, and pricing. The study also includes studying and clarifying challenges facing this type of electric charging station and proposing suitable solutions for those challenges. The paper aims to provide the reader with an overview of charging electric vehicles through renewable energy and establishing the ground for further research in this vital field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11093847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; +5 AuthorsNur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; Chen Chai Phing; Yahia Baashar; Luiz Fernando Capretz; Ali Q. Al-Shetwi; Sieh Kiong Tiong;doi: 10.3390/pr11051382
Solar is a significant renewable energy source. Solar energy can provide for the world’s energy needs while minimizing global warming from traditional sources. Forecasting the output of renewable energy has a considerable impact on decisions about the operation and management of power systems. It is crucial to accurately forecast the output of renewable energy sources in order to assure grid dependability and sustainability and to reduce the risk and expense of energy markets and systems. Recent advancements in long short-term memory (LSTM) have attracted researchers to the model, and its promising potential is reflected in the method’s richness and the growing number of papers about it. To facilitate further research and development in this area, this paper investigates LSTM models for forecasting solar energy by using time-series data. The paper is divided into two parts: (1) independent LSTM models and (2) hybrid models that incorporate LSTM as another type of technique. The Root mean square error (RMSE) and other error metrics are used as the representative evaluation metrics for comparing the accuracy of the selected methods. According to empirical studies, the two types of models (independent LSTM and hybrid) have distinct advantages and disadvantages depending on the scenario. For instance, LSTM outperforms the other standalone models, but hybrid models generally outperform standalone models despite their longer data training time requirement. The most notable discovery is the better suitability of LSTM as a predictive model to forecast the amount of solar radiation and photovoltaic power compared with other conventional machine learning methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Nur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; +5 AuthorsNur Liyana Mohd Jailani; Jeeva Kumaran Dhanasegaran; Gamal Alkawsi; Ammar Ahmed Alkahtani; Chen Chai Phing; Yahia Baashar; Luiz Fernando Capretz; Ali Q. Al-Shetwi; Sieh Kiong Tiong;doi: 10.3390/pr11051382
Solar is a significant renewable energy source. Solar energy can provide for the world’s energy needs while minimizing global warming from traditional sources. Forecasting the output of renewable energy has a considerable impact on decisions about the operation and management of power systems. It is crucial to accurately forecast the output of renewable energy sources in order to assure grid dependability and sustainability and to reduce the risk and expense of energy markets and systems. Recent advancements in long short-term memory (LSTM) have attracted researchers to the model, and its promising potential is reflected in the method’s richness and the growing number of papers about it. To facilitate further research and development in this area, this paper investigates LSTM models for forecasting solar energy by using time-series data. The paper is divided into two parts: (1) independent LSTM models and (2) hybrid models that incorporate LSTM as another type of technique. The Root mean square error (RMSE) and other error metrics are used as the representative evaluation metrics for comparing the accuracy of the selected methods. According to empirical studies, the two types of models (independent LSTM and hybrid) have distinct advantages and disadvantages depending on the scenario. For instance, LSTM outperforms the other standalone models, but hybrid models generally outperform standalone models despite their longer data training time requirement. The most notable discovery is the better suitability of LSTM as a predictive model to forecast the amount of solar radiation and photovoltaic power compared with other conventional machine learning methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu