- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Raymond L. Huhnke; Hailin Zhang; Xiao Sun; Hasan K. Atiyeh; Ralph S. Tanner;Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; +3 AuthorsXiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; Yinka Adesanya; Hasan K. Atiyeh; Hailin Zhang;pmid: 31862676
Biochar can be an inexpensive pH buffer and source of mineral and trace metal nutrients in acetone-butanol-ethanol (ABE) fermentation. This study evaluated the feasibility of replacing expensive 4-morpholineethanesulfonic acid (MES) P2 buffer and mineral nutrients with biochar made from switchgrass (SGBC), forage sorghum (FSBC), redcedar (RCBC) and poultry litter (PLBC) for ABE fermentation. Fermentations using Clostridium beijerinckii ATCC 51743 in glucose and non-detoxified switchgrass hydrolysate media were performed at 35 °C in 250 mL bottles for 72 h. Medium containing buffer and minerals without biochar was the control. Similar ABE production (about 18.0 g/L) in glucose media with SGBC, FSBC and RCBC and control was measured. However in non-detoxified switchgrass hydrolysate medium, SGBC, RCBC and PLBC produced more ABE (about 18.5 g/L) than the control (10.1 g/L). This demonstrates that biochar is an effective buffer and mineral supplement for ABE production from lignocellulosic biomass without costly detoxification process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hailin Zhang; Hasan K. Atiyeh; Ajay Kumar; Xiao Sun;pmid: 28950138
Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H2:CO2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Hasan K. Atiyeh; Mengxing Li; Yan Chen; Xiao Sun;pmid: 31669180
Biochar is traditionally used to improve soil properties in arable land and as adsorbent or precursor of activated carbon in wastewater treatment. Recent advances have shown biochar potentials in enhancing productions of biofuels and chemicals such as bio-ethanol, butanol, methane, hydrogen, bio-diesel, hydrocarbons and carboxylic acids. The properties of biochar such as high levels of porosity, functional groups, cation exchange capacity, pH buffering capacity, electron conductivity, and macro-/micro- nutrients (Na, K, Ca, Mg, P, S, Fe, etc.) provide appropriate conditions to relieve physicochemical stresses on microorganisms through pH buffering, detoxification, nutrients supply, serving as electron carrier and supportive microbial habitats. This paper critically reviewed biochar production and characteristics, biochar utilization in anaerobic digestion, composting, microbial fermentation, hydrolysate detoxification, catalysis in biomass refinery and biodiesel synthesis. This review provides novel vision of biochar application, which could guide future research towards cleaner and more economic production of renewable fuels and bio-based chemicals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E...NSF| Collaborative Research: Ethanol Plants to Produce Animal Feeds --- Whole Conversion of Corn and Residue to Support Biofuel and Feed ProductionPedro E Urriola; Bo Hu; Aravindan Rajendran; Gerald C Shurson; Tanner Barnharst; Xiao Sun;pmid: 33988726
Upcycle of co-products from corn-ethanol plant into protein-rich animal feed with balanced key amino acids via solid-state fermentation is a promising approach to economically support both biofuel and animal feed industries. However, there are multiple types of solid-state fermentation microorganisms and growth conditions that have not been tested. In this study, Mucor indicus and Rhizopus oryzae were used to ferment corn-based wet distiller's grains with solubles (WDGS). The effects of fermentation conditions (temperature, agitation, and moisture) and supplementations (extraneous carbon and nitrogen sources) were evaluated on protein production and amino acids profiles before and after fermentation. The study established best fermentation conditions (23 °C, static incubation for 4 days at 70% initial moisture content) to improve protein content for both R. oryzae and M. indicus. Moreover, urea supplied to R. oryzae and M. indicus improved protein concentration by 35 and 38%, and total amino acids content by 28 and 18%, respectively. The amount of 693.1 and 451.8 mg of additional total amino acids including 262.8 and 227.7 mg of key amino acids (lysine, methionine, tryptophan, and arginine) was synthesized by R. oryzae and M. indicus, respectively, per supply of 536 mg urea in 25 g of WDGS. This study demonstrated the feasibility of urea as a low-cost nitrogen source for amino acid biosynthesis in fungal fermentation of WDGS, which could contribute to the increasing demand for high-value monogastric animal feed.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-021-02580-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-021-02580-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Xiao, Sun; Rahul, Thunuguntla; Hailin, Zhang; Hasan, Atiyeh;pmid: 35792327
Biochar feedstock and production method affects its physicochemical properties and subsequent application. This study investigated the effects of biochar from switchgrass (SGB) and poultry litter (PLB) produced at 350 and 700 °C on alcohol formation using CO:CO2:H2 (40:30:30) by Clostridium carboxidivorans (P7) and C. ragsdalei (P11). Fermentations were performed in 250 mL bottles with a 50 mL working volume at 37 °C. Strains P7 and P11 produced 1.2- to 2.2-fold more alcohol and consumed 1.2- to 1.9-fold more syngas using biochars made at 700 °C compared to 350 °C. Both strains also produced 1.4- to1.9-fold more alcohol with both biochars made at 700 °C compared to control without biochar. Strain P11 produced 1.1- and 1.6-fold more alcohol and fatty acids, respectively, in medium with PLB made at 700 °C compared to strain P7. These results provide guidance towards the selection of biochar type and production temperature to improve syngas fermentation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Ralph S. Tanner; Ajay Kumar; Xiao Sun; Hailin Zhang; Hasan K. Atiyeh;pmid: 29886351
Biochar has functional groups, pH buffering capacity and cation exchange capacity (CEC) that can be beneficial in syngas fermentation. This study examined the properties of biochar made from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC), and their effects on ethanol and butanol production from syngas using Clostridium carboxidivorans. Experiments were performed in 250 mL bottle reactors with a 50 mL working volume at 37 °C fed syngas containing CO:H2:CO2 (40:30:30 by volume). Results showed that PLBC and SGBC enhanced ethanol production by 90% and 73%, respectively, and butanol production by fourfold compared to standard yeast extract medium without biochar (control). CO and H2 utilization in PLBC and SGBC media increased compared to control. PLBC had the highest pH buffering capacity, CEC and total amount of cations compared with SGBC, FSBC and RCBC, which could have contributed to its highest enhancement of ethanol and butanol production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Raymond L. Huhnke; Hailin Zhang; Xiao Sun; Hasan K. Atiyeh; Ralph S. Tanner;Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; +3 AuthorsXiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; Yinka Adesanya; Hasan K. Atiyeh; Hailin Zhang;pmid: 31862676
Biochar can be an inexpensive pH buffer and source of mineral and trace metal nutrients in acetone-butanol-ethanol (ABE) fermentation. This study evaluated the feasibility of replacing expensive 4-morpholineethanesulfonic acid (MES) P2 buffer and mineral nutrients with biochar made from switchgrass (SGBC), forage sorghum (FSBC), redcedar (RCBC) and poultry litter (PLBC) for ABE fermentation. Fermentations using Clostridium beijerinckii ATCC 51743 in glucose and non-detoxified switchgrass hydrolysate media were performed at 35 °C in 250 mL bottles for 72 h. Medium containing buffer and minerals without biochar was the control. Similar ABE production (about 18.0 g/L) in glucose media with SGBC, FSBC and RCBC and control was measured. However in non-detoxified switchgrass hydrolysate medium, SGBC, RCBC and PLBC produced more ABE (about 18.5 g/L) than the control (10.1 g/L). This demonstrates that biochar is an effective buffer and mineral supplement for ABE production from lignocellulosic biomass without costly detoxification process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hailin Zhang; Hasan K. Atiyeh; Ajay Kumar; Xiao Sun;pmid: 28950138
Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H2:CO2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Hasan K. Atiyeh; Mengxing Li; Yan Chen; Xiao Sun;pmid: 31669180
Biochar is traditionally used to improve soil properties in arable land and as adsorbent or precursor of activated carbon in wastewater treatment. Recent advances have shown biochar potentials in enhancing productions of biofuels and chemicals such as bio-ethanol, butanol, methane, hydrogen, bio-diesel, hydrocarbons and carboxylic acids. The properties of biochar such as high levels of porosity, functional groups, cation exchange capacity, pH buffering capacity, electron conductivity, and macro-/micro- nutrients (Na, K, Ca, Mg, P, S, Fe, etc.) provide appropriate conditions to relieve physicochemical stresses on microorganisms through pH buffering, detoxification, nutrients supply, serving as electron carrier and supportive microbial habitats. This paper critically reviewed biochar production and characteristics, biochar utilization in anaerobic digestion, composting, microbial fermentation, hydrolysate detoxification, catalysis in biomass refinery and biodiesel synthesis. This review provides novel vision of biochar application, which could guide future research towards cleaner and more economic production of renewable fuels and bio-based chemicals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E...NSF| Collaborative Research: Ethanol Plants to Produce Animal Feeds --- Whole Conversion of Corn and Residue to Support Biofuel and Feed ProductionPedro E Urriola; Bo Hu; Aravindan Rajendran; Gerald C Shurson; Tanner Barnharst; Xiao Sun;pmid: 33988726
Upcycle of co-products from corn-ethanol plant into protein-rich animal feed with balanced key amino acids via solid-state fermentation is a promising approach to economically support both biofuel and animal feed industries. However, there are multiple types of solid-state fermentation microorganisms and growth conditions that have not been tested. In this study, Mucor indicus and Rhizopus oryzae were used to ferment corn-based wet distiller's grains with solubles (WDGS). The effects of fermentation conditions (temperature, agitation, and moisture) and supplementations (extraneous carbon and nitrogen sources) were evaluated on protein production and amino acids profiles before and after fermentation. The study established best fermentation conditions (23 °C, static incubation for 4 days at 70% initial moisture content) to improve protein content for both R. oryzae and M. indicus. Moreover, urea supplied to R. oryzae and M. indicus improved protein concentration by 35 and 38%, and total amino acids content by 28 and 18%, respectively. The amount of 693.1 and 451.8 mg of additional total amino acids including 262.8 and 227.7 mg of key amino acids (lysine, methionine, tryptophan, and arginine) was synthesized by R. oryzae and M. indicus, respectively, per supply of 536 mg urea in 25 g of WDGS. This study demonstrated the feasibility of urea as a low-cost nitrogen source for amino acid biosynthesis in fungal fermentation of WDGS, which could contribute to the increasing demand for high-value monogastric animal feed.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-021-02580-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-021-02580-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Xiao, Sun; Rahul, Thunuguntla; Hailin, Zhang; Hasan, Atiyeh;pmid: 35792327
Biochar feedstock and production method affects its physicochemical properties and subsequent application. This study investigated the effects of biochar from switchgrass (SGB) and poultry litter (PLB) produced at 350 and 700 °C on alcohol formation using CO:CO2:H2 (40:30:30) by Clostridium carboxidivorans (P7) and C. ragsdalei (P11). Fermentations were performed in 250 mL bottles with a 50 mL working volume at 37 °C. Strains P7 and P11 produced 1.2- to 2.2-fold more alcohol and consumed 1.2- to 1.9-fold more syngas using biochars made at 700 °C compared to 350 °C. Both strains also produced 1.4- to1.9-fold more alcohol with both biochars made at 700 °C compared to control without biochar. Strain P11 produced 1.1- and 1.6-fold more alcohol and fatty acids, respectively, in medium with PLB made at 700 °C compared to strain P7. These results provide guidance towards the selection of biochar type and production temperature to improve syngas fermentation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Ralph S. Tanner; Ajay Kumar; Xiao Sun; Hailin Zhang; Hasan K. Atiyeh;pmid: 29886351
Biochar has functional groups, pH buffering capacity and cation exchange capacity (CEC) that can be beneficial in syngas fermentation. This study examined the properties of biochar made from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC), and their effects on ethanol and butanol production from syngas using Clostridium carboxidivorans. Experiments were performed in 250 mL bottle reactors with a 50 mL working volume at 37 °C fed syngas containing CO:H2:CO2 (40:30:30 by volume). Results showed that PLBC and SGBC enhanced ethanol production by 90% and 73%, respectively, and butanol production by fourfold compared to standard yeast extract medium without biochar (control). CO and H2 utilization in PLBC and SGBC media increased compared to control. PLBC had the highest pH buffering capacity, CEC and total amount of cations compared with SGBC, FSBC and RCBC, which could have contributed to its highest enhancement of ethanol and butanol production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu