- home
- Advanced Search
Filters
Year range
-chevron_right GOSDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2018 Germany, United KingdomPublisher:Elsevier BV Funded by:EC | REEEMEC| REEEMAuthors: Francesco Gardumi; Abhishek Shivakumar; Robbie Morrison; Constantinos Taliotis; +13 AuthorsFrancesco Gardumi; Abhishek Shivakumar; Robbie Morrison; Constantinos Taliotis; Oliver Broad; Agnese Beltramo; Vignesh Sridharan; Mark Howells; Jonas Hörsch; Taco Niet; Youssef Almulla; Eunice Ramos; Thorsten Burandt; Gabriela Peña Balderrama; Gustavo Moura; Eduardo Zepeda; Thomas Alfstad;Au cours des dernières décennies, la modélisation énergétique a soutenu la planification énergétique en offrant un aperçu de la dynamique entre l'accès à l'énergie, l'utilisation des ressources et le développement durable. En particulier ces dernières années, on a tenté de renforcer l'interface science-politique et d'accroître l'implication de la société dans les processus de planification énergétique. Cela a conduit, à la fois dans l'UE et dans le monde, au développement de pratiques de modélisation énergétique open source et transparentes. Cet article décrit le rôle d'un outil de modélisation énergétique open source dans le processus de planification énergétique et souligne son importance pour la société. Plus précisément, il décrit l'existence et les caractéristiques de la relation entre le développement d'un outil open source et librement disponible et son application, sa diffusion et son utilisation pour l'élaboration de politiques. En utilisant l'exemple du système de modélisation énergétique Open Source (OSeMOSYS), ce travail se concentre sur les pratiques qui ont été établies au sein de la communauté et qui ont rendu le développement et l'application du cadre à la fois pertinents et scientifiquement fondés. En las últimas décadas, la modelización energética ha apoyado la planificación energética al ofrecer información sobre la dinámica entre el acceso a la energía, el uso de recursos y el desarrollo sostenible. Especialmente en los últimos años, se ha intentado fortalecer la interfaz ciencia-política y aumentar la participación de la sociedad en los procesos de planificación energética. Esto ha llevado, tanto en la UE como en todo el mundo, al desarrollo de prácticas de modelado energético de código abierto y transparentes. Este documento describe el papel de una herramienta de modelado energético de código abierto en el proceso de planificación energética y destaca su importancia para la sociedad. Específicamente, describe la existencia y las características de la relación entre el desarrollo de una herramienta de código abierto y de libre acceso y su aplicación, difusión y uso para la formulación de políticas. Utilizando el ejemplo del Sistema de Modelado de Energía de Código Abierto (OSeMOSYS), este trabajo se centra en las prácticas que se establecieron dentro de la comunidad y que hicieron que el desarrollo y la aplicación del marco fueran relevantes y científicamente fundamentados. In the last decades, energy modelling has supported energy planning by offering insights into the dynamics between energy access, resource use, and sustainable development. Especially in recent years, there has been an attempt to strengthen the science-policy interface and increase the involvement of society in energy planning processes. This has, both in the EU and worldwide, led to the development of open-source and transparent energy modelling practices. This paper describes the role of an open-source energy modelling tool in the energy planning process and highlights its importance for society. Specifically, it describes the existence and characteristics of the relationship between developing an open-source, freely available tool and its application, dissemination and use for policy making. Using the example of the Open Source energy Modelling System (OSeMOSYS), this work focuses on practices that were established within the community and that made the framework's development and application both relevant and scientifically grounded. في العقود الماضية، دعمت نمذجة الطاقة تخطيط الطاقة من خلال تقديم رؤى حول الديناميات بين الوصول إلى الطاقة واستخدام الموارد والتنمية المستدامة. لا سيما في السنوات الأخيرة، كانت هناك محاولة لتعزيز التفاعل بين العلوم والسياسات وزيادة مشاركة المجتمع في عمليات تخطيط الطاقة. وقد أدى ذلك، في كل من الاتحاد الأوروبي والعالم، إلى تطوير ممارسات نمذجة الطاقة المفتوحة المصدر والشفافة. تصف هذه الورقة دور أداة نمذجة الطاقة مفتوحة المصدر في عملية تخطيط الطاقة وتسلط الضوء على أهميتها للمجتمع. على وجه التحديد، يصف وجود وخصائص العلاقة بين تطوير أداة مفتوحة المصدر ومتاحة مجانًا وتطبيقها ونشرها واستخدامها في صنع السياسات. باستخدام مثال نظام نمذجة الطاقة مفتوح المصدر (OSeMOSYS)، يركز هذا العمل على الممارسات التي تم تأسيسها داخل المجتمع والتي جعلت تطوير الإطار وتطبيقه مناسبًا ومرتكزًا على أسس علمية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Ioannis Pappis; Vignesh Sridharan; Mark Howells; Hrvoje Medarac; Ioannis Kougias; Rocío González Sánchez; Abhishek Shivakumar; Will Usher;Abstract Africa’s economic and population growth prospects are likely to increase energy and water demands. This quantitative study shows that energy decarbonisation pathways reduce water withdrawals (WWs) and water consumption (WC) relative to the baseline scenario. However, the more aggressive decarbonisation pathway (1.5 °C) leads to higher overall WWs than the 2.0 °C scenario but lower WC levels by 2065. By 2065, investments in low-carbon energy infrastructure increase annual WWs from 1% (52 bcm) in the 2.0 °C to 2% (85 bcm) in the 1.5 °C scenarios of total renewable water resources in Africa compared to 3% (159 bcm) in the baseline scenario with lower final energy demands in the mitigation scenarios. WC decreases from 1.2 bcm in the 2.0 °C to 1 bcm in the 1.5 °C scenario, compared to 2.2 bcm in the baseline scenario by 2065, due to the lower water intensity of the low-carbon energy systems. To meet the 1.5 °C pathway, the energy sector requires a higher WW than the 2.0 °C scenario, both in total and per unit of final energy. Overall, these findings demonstrate the crucial role of integrated water-energy planning, and the need for joined-up carbon policy and water resources management for the continent to achieve climate-compatible growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5ede&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5ede&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2024Publisher:Elsevier BV Kihara, Mungai; Lubello, Pietro; Millot, Ariane; Akute, Michelle; Kilonzi, Julius; Kitili, Monicah; Mukuri, Felister; Kinyanjui, Boniface; Hoseinpoori, Pooya; Hawkes, Adam; Shivakumar, Abhishek; Welsby, Dan; Pye, Steve;Over the coming decades, Kenya is likely to see a large increase in electricity demand driven by economic growth and wider electrification of different sectors. At the same time, Kenya remains committed to maintain its high share of renewable generation. This study proposes a novel framework to soft link OSeMOSYS, a capacity expansion model (CEM), and FlexTool, a production cost model (PCM), to address the limitations of CEMs in the representation of variable renewable energy sources. Results show the effectiveness of the methodology in identifying critical grid issues that would have been missed by the capacity expansion model alone, especially in the case of a higher penetration of non-dispatchable sources. They also confirm that based on robust planning approaches, Kenya is well placed to maintain its very low carbon generation system under different demand growth projections, leveraging on firm generation from geothermal and high wind potential.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2024.101312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2024.101312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Authors: Sridharan, Vignesh; Broad, Oliver; Shivakumar, Abhishek; Howells, Mark;This repository consists of the following datasets 1. EAPP_reference scenario_datafile.DD- This dataset is a model file that needs to be used with the code available in this GitHub link. This data file (in concurrence with the OSeMOSYS code) can be used to create a linear programming file (LP file) to be solved using any mathematical optimisation solver like GLPSOL/C-PLEX/GUROBI/CBC. 2. Main article_EAPP_data for figures.xlsx- This excel file contains the base data used to illustrate the figures in the main article. 3. Supplementary article_EAPP_data for figures.xlsx- This excel file contains the base data used to illustrate the figures in the supplementary article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1478149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1478149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Authors: Abhishek Shivakumar; Thomas Alfstad; Taco Niet;Abstract Currently available water-energy-food (WEF) modelling frameworks to analyse cross-sectoral interactions often share one or more of the following gaps: (a) lack of integration between sectors, (b) coarse spatial representation, and (c) lack of reproducible methods of nexus assessment. In this paper, we present a novel clustering tool as an expansion to the Climate-Land-Energy-Water-Systems modelling framework used to quantify inter-sectoral linkages between water, energy, and food systems. The clustering tool uses Agglomerative Hierarchical clustering to aggregate spatial data related to the land and water sectors. Using clusters of aggregated data reconciles the need for a spatially resolved representation of the land-use and water sectors with the computational and data requirements to efficiently solve such a model. The aggregated clusters, combined together with energy system components, form an integrated resource planning structure. The modelling framework is underpinned by an open-source energy system modelling tool—OSeMOSYS—and uses publicly available data with global coverage. By doing so, the modelling framework allows for reproducible WEF nexus assessments. The approach is used to explore the inter-sectoral linkages between the energy, land-use, and water sectors of Viet Nam out to 2030. A validation of the clustering approach confirms that underlying trends actual crop yield data are preserved in the resultant clusters. Finally, changes in cultivated area of selected crops are observed and differences in levels of crop migration are identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac2ce9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac2ce9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Research Square Platform LLC Funded by:NSERC, SFI | MAREI_Phase 2NSERC ,SFI| MAREI_Phase 2Authors: Trevor Barnes; Abhishek Shivakumar; Maarten Brinkerink; Taco Niet;Abstract This paper describes OSeMOSYS Global, an open-source, open-data model generator for creating globalelectricity system models for an active global modelling community. This version of the model generator is freelyavailable and can be used to create interconnected electricity system models for both the entire globe and forany geographically diverse subset of the globe. Compared to other existing global models, OSeMOSYS Globalallows for full user flexibility in determining the time slice structure and geographic scope of the model anddatasets, and is built using the widely used fully open-source OSeMOSYS energy system model. This paperdescribes the data sources, structure and use of OSeMOSYS Global, and provides illustrative workflow results.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1736011/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1736011/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Research Square Platform LLC Carla Cannone; Lucy Allington; Nicki de Wet; Abhishek Shivakumar; Philip Goynes; Cesar Valderrama; Vedran Kapor; Jarrad Wright; Rudolf Yeganyan; Naomi Tan; Long Seng To; John Harrison; Mark Howells;Abstract Energy models are crucial for helping governments and policymakers plan long-term investments in the energy transition context. One of the most established open-source optimisation models is OSeMOSYS—the Open-Source Energy Modelling System. This paper presents a new interface—clicSAND—for OSeMOSYS, which shortens the learning curve and supports beginner energy modellers to perform long-term investment analyses efficiently. The freely available and open-source clicSAND software consists of a user-friendly Excel interface for entering data, powerful solvers, and a dashboard for visualising results. The results, which extend to 2070, can inform policy decisions and mobilise financial resources for sustainable development measures—for example, ensuring affordable and secure energy supply and mitigating the effects of climate change. This paper describes clicSAND's main benefits, architecture, and functionalities. Furthermore, a South-African case study undertaken by participants of the international capacity-building event—the EMP-A (Energy Modelling Platform for Africa) 2021—shows the results achieved by inexperienced users following a three-week training course. Finally, current applications and future extensions of the software are also presented.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1338761/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1338761/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Ruchik Patel; Antonino Marvuglia; Paul Baustert; Yilin Huang; Abhishek Shivakumar; Igor Nikolic; Trivik Verma;Cities consume almost 80 percent of world’s energy and account for 60 percent of all the emissions of carbon dioxide and significant amounts of other greenhouse gases (GHG). The ongoing rapid urbanization will further increase GHG emissions of cities. The quantification of the environmental impact generated in cities is an important step to curb the impact. In fact, quantifying the consumption activities taking place inside a city, if differentiated by socioeconomic and demographic groups, can provide important insights for sustainable-consumption policies. However, the lack of high-resolution data related to these activities makes it difficult to quantify urban GHG emissions (as well as other impacts). This paper presents a methodology that can quantify the carbon footprint of households in cities using consumption data from a national or European level, where the resource consumption is linked to socioeconomic attributes of a population. The methodology is applied to analyzing the environmental impact by household resource consumption in the city of The Hague in the Netherlands. The key insights reveal potential intervention areas regarding resource consumption categories and demographic groups that can be targeted to reduce GHG emissions due to consumption-driven activities in the city. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; System Engineering ; Policy Analysis
Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 39 Powered bymore_vert Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Carla Cannone; Lucy Allington; Nicki de Wet; Abhishek Shivakumar; Philip Goynes; Cesar Valderrama; Alex Kell; Fernando Plazas-Niño; Reema Mohanty; Vedran Kapor; Jarrad Wright; Rudolf Yeganyan; Naomi Tan; Long Seng To; John Harrison; Mark Howells;Energy modelling plays a crucial role in assisting governmental and policymaking bodies to strategise long-term investments within the context of energy transition. Among the well-established open-source optimisation models, OSeMOSYS—the Open-Source Energy Modelling System—stands out. This paper introduces clicSAND, a novel user interface designed for OSeMOSYS, aimed at reducing the learning curve and supporting novice energy modelers in efficiently conducting long-term investment analyses. clicSAND, freely available and open-source, features a user-friendly Excel interface for data input, integrated solvers, and a visualisation dashboard for result interpretation. The outcomes, projected up to 2070, hold the potential to inform policy decisions and mobilise financial resources for sustainable development endeavors, such as ensuring affordable and secure energy supply and mitigating climate change impacts. This advancement not only democratises access to energy modelling tools but also empowers policymakers and stakeholders to conduct thorough long-term investment analyses with ease. This paper elaborates on clicSAND’s key advantages, architecture, and functionalities. Additionally, it discusses the evolutionary journey from clicSAND 1.0 to 3.0, emphasising a commitment to continuous improvement and user-centric adaptation, thereby enhancing its utility and relevance. The inclusion of a South African case study, conducted during the EMP-A (Energy Modelling Platform for Africa) 2021 international capacity-building event, showcases clicSAND’s efficacy in facilitating knowledge transfer and skill development among inexperienced users, while providing a tangible example of its application in addressing specific regional energy challenges and policy contexts. Finally, current applications and future extensions of the software are also presented.
Energies arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17163923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17163923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2018 Germany, United KingdomPublisher:Elsevier BV Funded by:EC | REEEMEC| REEEMAuthors: Francesco Gardumi; Abhishek Shivakumar; Robbie Morrison; Constantinos Taliotis; +13 AuthorsFrancesco Gardumi; Abhishek Shivakumar; Robbie Morrison; Constantinos Taliotis; Oliver Broad; Agnese Beltramo; Vignesh Sridharan; Mark Howells; Jonas Hörsch; Taco Niet; Youssef Almulla; Eunice Ramos; Thorsten Burandt; Gabriela Peña Balderrama; Gustavo Moura; Eduardo Zepeda; Thomas Alfstad;Au cours des dernières décennies, la modélisation énergétique a soutenu la planification énergétique en offrant un aperçu de la dynamique entre l'accès à l'énergie, l'utilisation des ressources et le développement durable. En particulier ces dernières années, on a tenté de renforcer l'interface science-politique et d'accroître l'implication de la société dans les processus de planification énergétique. Cela a conduit, à la fois dans l'UE et dans le monde, au développement de pratiques de modélisation énergétique open source et transparentes. Cet article décrit le rôle d'un outil de modélisation énergétique open source dans le processus de planification énergétique et souligne son importance pour la société. Plus précisément, il décrit l'existence et les caractéristiques de la relation entre le développement d'un outil open source et librement disponible et son application, sa diffusion et son utilisation pour l'élaboration de politiques. En utilisant l'exemple du système de modélisation énergétique Open Source (OSeMOSYS), ce travail se concentre sur les pratiques qui ont été établies au sein de la communauté et qui ont rendu le développement et l'application du cadre à la fois pertinents et scientifiquement fondés. En las últimas décadas, la modelización energética ha apoyado la planificación energética al ofrecer información sobre la dinámica entre el acceso a la energía, el uso de recursos y el desarrollo sostenible. Especialmente en los últimos años, se ha intentado fortalecer la interfaz ciencia-política y aumentar la participación de la sociedad en los procesos de planificación energética. Esto ha llevado, tanto en la UE como en todo el mundo, al desarrollo de prácticas de modelado energético de código abierto y transparentes. Este documento describe el papel de una herramienta de modelado energético de código abierto en el proceso de planificación energética y destaca su importancia para la sociedad. Específicamente, describe la existencia y las características de la relación entre el desarrollo de una herramienta de código abierto y de libre acceso y su aplicación, difusión y uso para la formulación de políticas. Utilizando el ejemplo del Sistema de Modelado de Energía de Código Abierto (OSeMOSYS), este trabajo se centra en las prácticas que se establecieron dentro de la comunidad y que hicieron que el desarrollo y la aplicación del marco fueran relevantes y científicamente fundamentados. In the last decades, energy modelling has supported energy planning by offering insights into the dynamics between energy access, resource use, and sustainable development. Especially in recent years, there has been an attempt to strengthen the science-policy interface and increase the involvement of society in energy planning processes. This has, both in the EU and worldwide, led to the development of open-source and transparent energy modelling practices. This paper describes the role of an open-source energy modelling tool in the energy planning process and highlights its importance for society. Specifically, it describes the existence and characteristics of the relationship between developing an open-source, freely available tool and its application, dissemination and use for policy making. Using the example of the Open Source energy Modelling System (OSeMOSYS), this work focuses on practices that were established within the community and that made the framework's development and application both relevant and scientifically grounded. في العقود الماضية، دعمت نمذجة الطاقة تخطيط الطاقة من خلال تقديم رؤى حول الديناميات بين الوصول إلى الطاقة واستخدام الموارد والتنمية المستدامة. لا سيما في السنوات الأخيرة، كانت هناك محاولة لتعزيز التفاعل بين العلوم والسياسات وزيادة مشاركة المجتمع في عمليات تخطيط الطاقة. وقد أدى ذلك، في كل من الاتحاد الأوروبي والعالم، إلى تطوير ممارسات نمذجة الطاقة المفتوحة المصدر والشفافة. تصف هذه الورقة دور أداة نمذجة الطاقة مفتوحة المصدر في عملية تخطيط الطاقة وتسلط الضوء على أهميتها للمجتمع. على وجه التحديد، يصف وجود وخصائص العلاقة بين تطوير أداة مفتوحة المصدر ومتاحة مجانًا وتطبيقها ونشرها واستخدامها في صنع السياسات. باستخدام مثال نظام نمذجة الطاقة مفتوح المصدر (OSeMOSYS)، يركز هذا العمل على الممارسات التي تم تأسيسها داخل المجتمع والتي جعلت تطوير الإطار وتطبيقه مناسبًا ومرتكزًا على أسس علمية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Ioannis Pappis; Vignesh Sridharan; Mark Howells; Hrvoje Medarac; Ioannis Kougias; Rocío González Sánchez; Abhishek Shivakumar; Will Usher;Abstract Africa’s economic and population growth prospects are likely to increase energy and water demands. This quantitative study shows that energy decarbonisation pathways reduce water withdrawals (WWs) and water consumption (WC) relative to the baseline scenario. However, the more aggressive decarbonisation pathway (1.5 °C) leads to higher overall WWs than the 2.0 °C scenario but lower WC levels by 2065. By 2065, investments in low-carbon energy infrastructure increase annual WWs from 1% (52 bcm) in the 2.0 °C to 2% (85 bcm) in the 1.5 °C scenarios of total renewable water resources in Africa compared to 3% (159 bcm) in the baseline scenario with lower final energy demands in the mitigation scenarios. WC decreases from 1.2 bcm in the 2.0 °C to 1 bcm in the 1.5 °C scenario, compared to 2.2 bcm in the baseline scenario by 2065, due to the lower water intensity of the low-carbon energy systems. To meet the 1.5 °C pathway, the energy sector requires a higher WW than the 2.0 °C scenario, both in total and per unit of final energy. Overall, these findings demonstrate the crucial role of integrated water-energy planning, and the need for joined-up carbon policy and water resources management for the continent to achieve climate-compatible growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5ede&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5ede&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2024Publisher:Elsevier BV Kihara, Mungai; Lubello, Pietro; Millot, Ariane; Akute, Michelle; Kilonzi, Julius; Kitili, Monicah; Mukuri, Felister; Kinyanjui, Boniface; Hoseinpoori, Pooya; Hawkes, Adam; Shivakumar, Abhishek; Welsby, Dan; Pye, Steve;Over the coming decades, Kenya is likely to see a large increase in electricity demand driven by economic growth and wider electrification of different sectors. At the same time, Kenya remains committed to maintain its high share of renewable generation. This study proposes a novel framework to soft link OSeMOSYS, a capacity expansion model (CEM), and FlexTool, a production cost model (PCM), to address the limitations of CEMs in the representation of variable renewable energy sources. Results show the effectiveness of the methodology in identifying critical grid issues that would have been missed by the capacity expansion model alone, especially in the case of a higher penetration of non-dispatchable sources. They also confirm that based on robust planning approaches, Kenya is well placed to maintain its very low carbon generation system under different demand growth projections, leveraging on firm generation from geothermal and high wind potential.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2024.101312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2024.101312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Authors: Sridharan, Vignesh; Broad, Oliver; Shivakumar, Abhishek; Howells, Mark;This repository consists of the following datasets 1. EAPP_reference scenario_datafile.DD- This dataset is a model file that needs to be used with the code available in this GitHub link. This data file (in concurrence with the OSeMOSYS code) can be used to create a linear programming file (LP file) to be solved using any mathematical optimisation solver like GLPSOL/C-PLEX/GUROBI/CBC. 2. Main article_EAPP_data for figures.xlsx- This excel file contains the base data used to illustrate the figures in the main article. 3. Supplementary article_EAPP_data for figures.xlsx- This excel file contains the base data used to illustrate the figures in the supplementary article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1478149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1478149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Authors: Abhishek Shivakumar; Thomas Alfstad; Taco Niet;Abstract Currently available water-energy-food (WEF) modelling frameworks to analyse cross-sectoral interactions often share one or more of the following gaps: (a) lack of integration between sectors, (b) coarse spatial representation, and (c) lack of reproducible methods of nexus assessment. In this paper, we present a novel clustering tool as an expansion to the Climate-Land-Energy-Water-Systems modelling framework used to quantify inter-sectoral linkages between water, energy, and food systems. The clustering tool uses Agglomerative Hierarchical clustering to aggregate spatial data related to the land and water sectors. Using clusters of aggregated data reconciles the need for a spatially resolved representation of the land-use and water sectors with the computational and data requirements to efficiently solve such a model. The aggregated clusters, combined together with energy system components, form an integrated resource planning structure. The modelling framework is underpinned by an open-source energy system modelling tool—OSeMOSYS—and uses publicly available data with global coverage. By doing so, the modelling framework allows for reproducible WEF nexus assessments. The approach is used to explore the inter-sectoral linkages between the energy, land-use, and water sectors of Viet Nam out to 2030. A validation of the clustering approach confirms that underlying trends actual crop yield data are preserved in the resultant clusters. Finally, changes in cultivated area of selected crops are observed and differences in levels of crop migration are identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac2ce9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac2ce9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Research Square Platform LLC Funded by:NSERC, SFI | MAREI_Phase 2NSERC ,SFI| MAREI_Phase 2Authors: Trevor Barnes; Abhishek Shivakumar; Maarten Brinkerink; Taco Niet;Abstract This paper describes OSeMOSYS Global, an open-source, open-data model generator for creating globalelectricity system models for an active global modelling community. This version of the model generator is freelyavailable and can be used to create interconnected electricity system models for both the entire globe and forany geographically diverse subset of the globe. Compared to other existing global models, OSeMOSYS Globalallows for full user flexibility in determining the time slice structure and geographic scope of the model anddatasets, and is built using the widely used fully open-source OSeMOSYS energy system model. This paperdescribes the data sources, structure and use of OSeMOSYS Global, and provides illustrative workflow results.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1736011/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1736011/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Research Square Platform LLC Carla Cannone; Lucy Allington; Nicki de Wet; Abhishek Shivakumar; Philip Goynes; Cesar Valderrama; Vedran Kapor; Jarrad Wright; Rudolf Yeganyan; Naomi Tan; Long Seng To; John Harrison; Mark Howells;Abstract Energy models are crucial for helping governments and policymakers plan long-term investments in the energy transition context. One of the most established open-source optimisation models is OSeMOSYS—the Open-Source Energy Modelling System. This paper presents a new interface—clicSAND—for OSeMOSYS, which shortens the learning curve and supports beginner energy modellers to perform long-term investment analyses efficiently. The freely available and open-source clicSAND software consists of a user-friendly Excel interface for entering data, powerful solvers, and a dashboard for visualising results. The results, which extend to 2070, can inform policy decisions and mobilise financial resources for sustainable development measures—for example, ensuring affordable and secure energy supply and mitigating the effects of climate change. This paper describes clicSAND's main benefits, architecture, and functionalities. Furthermore, a South-African case study undertaken by participants of the international capacity-building event—the EMP-A (Energy Modelling Platform for Africa) 2021—shows the results achieved by inexperienced users following a three-week training course. Finally, current applications and future extensions of the software are also presented.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1338761/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1338761/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Ruchik Patel; Antonino Marvuglia; Paul Baustert; Yilin Huang; Abhishek Shivakumar; Igor Nikolic; Trivik Verma;Cities consume almost 80 percent of world’s energy and account for 60 percent of all the emissions of carbon dioxide and significant amounts of other greenhouse gases (GHG). The ongoing rapid urbanization will further increase GHG emissions of cities. The quantification of the environmental impact generated in cities is an important step to curb the impact. In fact, quantifying the consumption activities taking place inside a city, if differentiated by socioeconomic and demographic groups, can provide important insights for sustainable-consumption policies. However, the lack of high-resolution data related to these activities makes it difficult to quantify urban GHG emissions (as well as other impacts). This paper presents a methodology that can quantify the carbon footprint of households in cities using consumption data from a national or European level, where the resource consumption is linked to socioeconomic attributes of a population. The methodology is applied to analyzing the environmental impact by household resource consumption in the city of The Hague in the Netherlands. The key insights reveal potential intervention areas regarding resource consumption categories and demographic groups that can be targeted to reduce GHG emissions due to consumption-driven activities in the city. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; System Engineering ; Policy Analysis
Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 39 Powered bymore_vert Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Carla Cannone; Lucy Allington; Nicki de Wet; Abhishek Shivakumar; Philip Goynes; Cesar Valderrama; Alex Kell; Fernando Plazas-Niño; Reema Mohanty; Vedran Kapor; Jarrad Wright; Rudolf Yeganyan; Naomi Tan; Long Seng To; John Harrison; Mark Howells;Energy modelling plays a crucial role in assisting governmental and policymaking bodies to strategise long-term investments within the context of energy transition. Among the well-established open-source optimisation models, OSeMOSYS—the Open-Source Energy Modelling System—stands out. This paper introduces clicSAND, a novel user interface designed for OSeMOSYS, aimed at reducing the learning curve and supporting novice energy modelers in efficiently conducting long-term investment analyses. clicSAND, freely available and open-source, features a user-friendly Excel interface for data input, integrated solvers, and a visualisation dashboard for result interpretation. The outcomes, projected up to 2070, hold the potential to inform policy decisions and mobilise financial resources for sustainable development endeavors, such as ensuring affordable and secure energy supply and mitigating climate change impacts. This advancement not only democratises access to energy modelling tools but also empowers policymakers and stakeholders to conduct thorough long-term investment analyses with ease. This paper elaborates on clicSAND’s key advantages, architecture, and functionalities. Additionally, it discusses the evolutionary journey from clicSAND 1.0 to 3.0, emphasising a commitment to continuous improvement and user-centric adaptation, thereby enhancing its utility and relevance. The inclusion of a South African case study, conducted during the EMP-A (Energy Modelling Platform for Africa) 2021 international capacity-building event, showcases clicSAND’s efficacy in facilitating knowledge transfer and skill development among inexperienced users, while providing a tangible example of its application in addressing specific regional energy challenges and policy contexts. Finally, current applications and future extensions of the software are also presented.
Energies arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17163923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17163923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu